Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-10T10:16:32.290Z Has data issue: false hasContentIssue false

An initial characterization of the proteolytic enzymes secreted by the adult stage of the human hookworm Necator americanus

Published online by Cambridge University Press:  06 April 2009

A. Brown
Affiliation:
Department of Life Sciences, Nottingham Trent University, Nottingham NG11 8NS
J. M. Burleigh
Affiliation:
Department of Life Sciences, Nottingham Trent University, Nottingham NG11 8NS
E. E. Billett
Affiliation:
Department of Life Sciences, Nottingham Trent University, Nottingham NG11 8NS
D. I. Pritchard
Affiliation:
Department of Life Science, University of Nottingham, Nottingham NG7 2RD

Summary

The proteolytic activities present in adult Necator americanus excretory–secretory products have been assessed using biologically relevant, naturally occurring substrates (haemoglobin and fibrinogen) and a number of synthetic fluorogenic and chromogenic substrates. One broad peak of activity was observed against haemoglobin in the pH range 5 to 7, with maximum activity at pH 6·6, while fibrinogenolytic activity was shown to be greater at pH 3·5. Inhibition studies against haemoglobin, fibrinogen and synthetic substrates using a battery of appropriate protease inhibitors indicated the presence of a mixture of aspartyl, cysteinyl and serine proteases. Metal ion (Ca2+, Zn2+ and Fe2+) stimulation was demonstrated, with stimulation by Zn2+ being the most marked. These results are discussed in the context of recent developments in the field of parasite proteolytic enzymes, where they have been suggested as targets for immuno- and chemotherapy.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bell, G. H., Emslie-Smith, D. & Paterson, C. R. (1980). Textbook of Physiology. London: Churchill-Livingstone.Google Scholar
Beynon, R. J. & Bond, J. S. (1989). Proteolytic Enzymes – a Practical Approach. Oxford: IRL Press.Google Scholar
Bond, J. S. & Butler, P. E. (1987). Intracellular proteases. Annual Review of Biochemistry 56, 333–64.CrossRefGoogle ScholarPubMed
Brown, A. & Pritchard, D. I. (1993). The immunogenicity of hookworm (N. americanus) acetylcholinesterase (AChE) in man. Parasite Immunology 15, 195203.CrossRefGoogle Scholar
Burt, J. S. & Ogilvie, B. M. (1975). In vitro maintenance of nematode parasites assayed by acetylcholinesterase and allergen secretion. Experimental Parasitology 38, 7582.CrossRefGoogle ScholarPubMed
Carmona, C., Dowd, A. J., Smith, A. M. & Dalton, J. P. (1993). Cathepsin L proteinase secreted by Fasciola hepatica in vitro prevents antibody-mediated eosinophil attachment to newly excysted juveniles. Molecular and Biochemical Parasitology 62, 918.CrossRefGoogle ScholarPubMed
Carr, A. & Pritchard, D. I. (1986). Identification of hookworm (Necator americanus) antigens and their translation in vitro. Molecular and Biochemical Parasitology 19, 251–8.CrossRefGoogle ScholarPubMed
Carr, A. & Pritchard, D. I. (1987). Antigen expression during development of the human hookworm Necator americanus (Nematoda). Parasite Immunology 9, 219–34.CrossRefGoogle ScholarPubMed
Carroll, S. M., Howse, D. J. & Grove, D. I. (1984). The anti-coagulant effects of the hookworm Ancylostoma ceylanicum: Observations on human and dog blood in vitro and infected dogs in vivo. Thrombosis and Haemostasis 52, 222–7.Google Scholar
Carroll, S. M. & Grove, D. I. (1985). Resistance of dogs to reinfection with Ancylostoma ceylanicum following anthelmintic therapy. Transactions of the Royal Society of Tropical Medicine and Hygiene 79, 519–23.CrossRefGoogle ScholarPubMed
Clark, D. T. (1956). Identification of β ZnS in the intestinal cells of Strongylus spp. Journal of Parasitology 42, 7780.CrossRefGoogle ScholarPubMed
Cox, G. N., Pratt, D., Hageman, R. & Boisvenue, R. J. (1990). Molecular cloning and primary sequence of a cysteine protease expressed by Haemonchus contortus adult worms. Molecular and Biochemical Parasitology 41, 2534.CrossRefGoogle ScholarPubMed
Dunn, B. M., Kammermann, B. & McCurry, K. R. (1984). The synthesis, purification and evaluation of a chromomorphic substrate for pepsin and other aspartyl proteases: Design of a substrate based on subsite preferences. Analytical Biochemistry 138, 6873.CrossRefGoogle Scholar
Eisa, E. A., Al-Gauhati, E. Z., Al-Nagady, S. A. & Yanni, N. (1972). Blood zinc and copper in normal and diseased Egyptians. Journal of Tropical Medicine and Hygiene 75, 246–50.Google ScholarPubMed
Gianotti, A. J., Clark, D. T. & Dash, J. (1991). Zinc sulphide in intestinal granules of Ancylostoma caninum adults. Journal of Parasitology 72, 246–50.Google Scholar
Goldberg, D. E., Slater, A. F. G., Cerami, A. & Henderson, G. B. (1990). Haemoglobin degradation in the malarial parasite Plasmodium falciparum: An ordered process in a unique organelle. Proceedings of the National Academy of Sciences, USA 87, 2931–5.CrossRefGoogle Scholar
Hotez, P. J. & Cerami, A. (1983). Secretion of a proteolytic anticoagulant by Ancylostoma ‘hookworms’. Journal of Experimental Medicine 157, 1594–603.CrossRefGoogle ScholarPubMed
Hotez, P. J., Trang, N. L., Mckerrow, J. H. & Cerami, A. (1985). Isolation of a proteolytic enzyme from the adult hookworm Ancylostoma caninum. Journal of Biological Chemistry 260, 7343–8.CrossRefGoogle ScholarPubMed
Karanu, F. N., Rurangirwa, F. R., McGuire, T. C. & Jasmer, D. P. (1993). Haemonchus contortus: Identification of proteases with diverse characteristics in adult worm excretory–secretory products. Experimental Parasitology 77, 362–71.CrossRefGoogle ScholarPubMed
Klinkert, M. Q., Felleisen, R., Link, G., Ruppel, A. & Beck, E. (1989). Primary structures of Sm 31/32 diagnostic proteins of Schistosoma mansoni and their identification as proteases. Molecular and Biochemical Parasitology 33, 113–22.CrossRefGoogle Scholar
Knox, D. P., Redmond, D. L. & Jones, D. G. (1993). Characterization of proteinases in extracts of adult Haemonchus contortus, the ovine abomassal nematode. Parasitology 106, 395404.CrossRefGoogle Scholar
Kojima, K., Kinoshita, H., Kato, T., Nagatsu, T., Takada, K. & Sakakibara, S. (1979). A new and highly sensitive fluorescence assay for collagenase-like peptidase activity. Analytical Biochemistry 100, 4350.CrossRefGoogle ScholarPubMed
Loeb, L. & Smith, A. J. (1904). The presence of a substance inhibiting the coagulation of the blood in Anchylostoma. Proceedings of the Royal Society of Philadelphia 7, 173–8.Google Scholar
Lowry, O., Rosebrough, N., Farr, A. & Randall, R. (1951). Protein measurements with the Folin-phenol reagent. Journal of Biological Chemistry 193, 265–75.CrossRefGoogle ScholarPubMed
Lucas, M. L. & Mathan, V. I. (1989). Jejunal surface pH measurements in tropical sprue. Transactions of the Royal Society of Tropical Medicine and Hygiene 83, 138–42.CrossRefGoogle ScholarPubMed
Mason, R. W., Green, G. D. J. & Barrett, A. J. (1985).Human liver cathepsin L. The Biochemical Journal 226, 233–41.CrossRefGoogle ScholarPubMed
Mcginty, A., Moore, M., Halton, D. W. & Walker, B. (1993). Characterization of the cysteine proteinases of the common liver fluke Fasciola hepatica using novel, active-site directed affinity labels. Parasitology 106, 487–93.CrossRefGoogle ScholarPubMed
Mckerrow, J. H. (1988). Parasite proteases. Experimental Parasitology 68, 111–15.CrossRefGoogle Scholar
Meirelles, M. N. L., Juliano, L., Carmona, E., Silva, S. G., Costa, E. M., Murta, A. C. M. & Scharfstein, J. (1992). Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the development of Trypanosoma cruzi in vitro. Molecular and Biochemical Parasitology 52, 175–84.CrossRefGoogle ScholarPubMed
Miller, H. R. P. (1987). Gastrointestinal mucus, a medium for survival and for elimination of nematodes and protozoa. Parasitology 94, S77–S100.CrossRefGoogle ScholarPubMed
Morita, T., Kato, H., Iwanaga, S., Takada, K., Kimura, T. & Sakakibara, S. (1977). New fluorogenic substrates for thrombin, factor Xa, kallikreins and urokinase. Journal of Biochemistry 82, 1495–8.CrossRefGoogle ScholarPubMed
Oya, Y. & Noguchi, I. (1977). Some properties of haemoglobin protease from Ancylostoma caninum. Japanese Journal of Parasitology 26, 307–13.Google Scholar
Pratt, D., Cox, G. N., Milhausen, M. J. & Boisvenue, R. J. (1990). A developmentally regulated cysteine protease family in Haemonchus contortus. Molecular and Biochemical Parasitology 43, 181–92.CrossRefGoogle ScholarPubMed
Pratt, D., Lyman, G. A., Hageman, R., Reynolds, V., Boisvenue, R. J. & Cox, G. N. (1992). Cloning and sequence comparisons of four distinct cysteine proteases expressed by Haemonchus contortus adult worms. Molecular and Biochemical Parasitology 51, 209–18.CrossRefGoogle ScholarPubMed
Pritchard, D. I. (1990). Necator americanus antigens and immunological targets. In Hookworm Disease: Current Status and New Directions (ed. Schad, G. A. & Warren, K. S.) pp. 340350. London: Taylor and Francis.Google Scholar
Pritchard, D. I., Mckean, P. G. & Schad, G. A. (1990 a). An immunological and biochemical comparison of hookworm species. Parasitology Today 6, 154–6.CrossRefGoogle ScholarPubMed
Pritchard, D. I., Quinnell, R. J., Slater, A. F. G., Mckean, P. G., Dale, D. D. S., Raiko, A. & Keymer, A. E. (1990 b). Epidemiology and immunology of Necator americanus infection in a community in Papua New Guinea: Humoral responses to excretory-secretory and cuticular antigens. Parasitology 100, 317–26.CrossRefGoogle Scholar
Pritchard, D. I., Leggett, K. V., Rogan, M. T., Mckean, P. G. & Brown, A. (1991). Necator americanus secretory acetylcholinesterase and its purification from excretory-secretory products by affinity chromatography. Parasite Immunology 13, 187–9.CrossRefGoogle ScholarPubMed
Quinnell, R. J., Slater, A. F. G., Tighe, P. J., Walsh, E. A., Keymer, A. E. & Pritchard, D. I. (1993). Reinfection with hookworm after chemotherapy in Papua New Guinea. Parasitology 106, 379–85.CrossRefGoogle ScholarPubMed
Roitt, I. M., Brostoff, J. & Male, D. K. (1993). Immunology. St Louis, MO, USA: Mosby.Google Scholar
Robertson, C. D. & Coombs, G. H. (1993). Cathepsin B-like proteases of Leishmania mexicana. Molecular and Biochemical Parasitology 62, 271–80.CrossRefGoogle ScholarPubMed
Rosenthal, P. J., Wollish, W. S., Palmer, J. T. & Rasnick, D. (1991). Antimalarial effects of peptide inhibitors of a Plasmodium falciparum cysteinyl proteinase. Journal of Clinical Investigation 88, 1467–72.CrossRefGoogle Scholar
Schad, G. A. & Banwell, J. G. (1984). Hookworms. In Tropical and Geographical Medicine (ed. Warren, K. S. & Mahmoud, A. A. F.), pp. 359372. New York: McGraw-Hill.Google Scholar
Sen, H. G. & Seth, D. (1967). Complete development of the human hookworm Necator americanus in golden hamsters, Mesocricetus auratus. Nature, London 214, 609–10.CrossRefGoogle Scholar
Tack, B. F., Dean, J., Eilat, D., Lorenz, P. E. & Schechter, A. N. (1980). Tritium labelling of proteins to a high specific radioactivity by reductive methylation. Journal of Biological Chemistry 255, 8842–7.CrossRefGoogle Scholar
Thorson, R. E. (1956). Proteolytic activity in extracts of the oesophagus of adults of Ancylostoma caninum and the effect of immune serum on this activity. Journal of Parasitology 42, 21–5.CrossRefGoogle ScholarPubMed
Wakelin, D. (1984). Immunity to Parasites. How Animals Control Parasitic Infections. London: Edward Arnold Ltd.Google Scholar
Wijffels, G. L., Salvatore, L., Dosen, M., Waddington, J., Wilson, L., Thompson, C., Campbell, N., Sexton, J., Wicker, J., Bowen, F., Friedel, T. & Spithill, T. W. (1994). Vaccination of sheep with purified cysteine proteinases of Fasciola hepatica decreases worm fecundity. Experimental Parasitology 78, 132–48.CrossRefGoogle ScholarPubMed
Zerda, K. S., Dresden, M. H. & Chappell, C. L. (1988). Schistosoma mansoni: Expression and role of cysteine proteinases in developing schistosomula. Experimental Parasitology 67, 238–46.CrossRefGoogle ScholarPubMed