Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-16T17:13:48.607Z Has data issue: false hasContentIssue false

The application of control analysis to helminth pathways

Published online by Cambridge University Press:  06 April 2009

J. Barrett
Affiliation:
Department of Zoology, University College of Wales, Aberystwyth, Dyfed, UK

Summary

Parasitic helminths have an absolute requirement for carbohydrate for their energy metabolism, there being no significant contribution from fatty acid or amino acid catabolism. There is no significant synthesis of glucose or glycogen from non-hexose precursors in helminths and so they are dependent on dietary carbohydrate. Characteristically parasitic helminths break down glycogen or glucose via linear anaerobic pathways to give reduced organic end-products, usually acids such as lactate, acetate, succinate and propionate or more rarely alcohols such as ethanol, propanol and acetoin (Barrett, 1984).

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrett, J. (1981). Biochemistry of Parasitic Helminths. London: MacMillan.CrossRefGoogle Scholar
Barrett, J. (1984). The anaerobic end-products of helminths. Parasitology 88, 179–98.CrossRefGoogle ScholarPubMed
Chen, Y. -D. & Westerhoff, H. V. (1986). How do inhibitors and modifiers of individual enzymes affect steady-state fluxes and concentrations in metabolic systems? Mathematical Modelling 7, 1173–80.CrossRefGoogle Scholar
Groen, A. K., van der Meer, R., Westerhoff, H. V., Wanders, R. J. A., Akerboom, T. P. M. & Tager, J. M. (1982). Control of metabolic fluxes. In Metabolic Compartmentation (ed. Sies, H.), pp. 937. New York: Academic Press.Google Scholar
Groen, A. K., van Roermund, C. W. T., Vervoorn, R. C. & Tager, J. M. (1986). Control of gluconeogenesis in rat liver cells. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. The Biochemical Journal 237, 379–89.CrossRefGoogle ScholarPubMed
Groen, A. K., Wanders, R. J. A., Westerhoff, H. V., van der Meer, R. & Tager, J. M. (1982). Quantification of the contribution of various steps to the control of mitochondrial respiration. Journal of Biological Chemistry 257, 2754–7.CrossRefGoogle Scholar
Heinrich, R. & Rapoport, T. A. (1974). A linear steady-state treatment of enzymatic chains. Critique of the cross-over theorem and a general procedure to identify interaction sites with an effector. European Journal of Biochemistry 42, 97105.CrossRefGoogle Scholar
Heinrich, R., Rapoport, S. M. & Rapoport, T. (1977). Metabolic regulation and mathematical models. Progress in Biophysics and Molecular Biology 32, 182.CrossRefGoogle ScholarPubMed
Kacser, H. & Burns, J. A. (1973). The control of flux. In Rate Control of Biological Processes (ed. Davies, D. D.), Symposium of the Society for Experimental Biology 27, 65104. Cambridge: Cambridge University Press.Google Scholar
Kacser, H. & Burns, J. A. (1979). Molecular democracy: who shares the controls? Biochemical Society Transactions 7, 1149–60.CrossRefGoogle ScholarPubMed
Kacser, H. & Burns, J. A. (1981). The molecular basis of dominance. Genetics 97, 639–66.CrossRefGoogle ScholarPubMed
Kell, D. B. & Westerhoff, H. V. (1986 a). Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiology Reviews 39, 305–20.CrossRefGoogle Scholar
Kell, D. B. & Westerhoff, H. V. (1986 b). Towards a rational approach to the optimization of flux in microbial biotransformations. Trends in Biotechnology 4, 137–42.CrossRefGoogle Scholar
Rapoport, T. A., Heinrich, R., Jacobasch, G. & Rapoport, S. (1974). A linear steady-state treatment of enzymatic chains. A mathematical model of glycolysis of human erythrocytes. European Journal of Biochemistry 42, 107–20.CrossRefGoogle ScholarPubMed
Savageau, M. A. (1971). Concepts relating the behaviour of biochemical systems to their underlying molecular properties. Archives of Biochemistry and Biophysics 145, 612–21.CrossRefGoogle ScholarPubMed
Savageau, M. A. (1972). The behaviour of intact biochemical control systems. Current Topics in Cellular Regulation 6, 63130.CrossRefGoogle Scholar
Tager, J. M., Groen, A. K., Wanders, R. J. A., Duszynzki, J., Westerhoff, H. V. & Vervoorn, R. C. (1983). Control of mitochondrial respiration. Biochemical Society Transactions 11, 40–3.CrossRefGoogle ScholarPubMed
Westerhoff, H. V. & van Dam, J. (1986). Mosaic Non-Equilibrium Thermodynamics and the Control of Biological Free Energy Transduction. Amsterdam: Elsevier.Google Scholar
Westerhoff, H. V., Groen, A. K. & Wanders, R. J. A. (1984). Modern theories of metabolic control and their applications. Bioscience Reports 4, 122.CrossRefGoogle ScholarPubMed
Westerhoff, H. V. & Kell, D. B. (1987). A matrix method for determining the steps most rate-limiting to metabolic fluxes in biotechnological processes. Biotechnology and Bioengineering 30, 101–7.CrossRefGoogle ScholarPubMed