Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-09T01:16:41.381Z Has data issue: false hasContentIssue false

Are cryptic species a problem for parasitological biological tagging for stock identification of aquatic organisms?

Published online by Cambridge University Press:  25 February 2014

RODNEY A. BRAY*
Affiliation:
Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
THOMAS H. CRIBB
Affiliation:
School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
*
*Corresponding author: Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK. E-mail: rab@nhm.ac.uk

Summary

The effective use of biological tags in stock assessment relies on the reliable identification of the parasites concerned. This may be compromised if cryptic species are not recognized. Here we review what is known about cryptic species in aquatic hosts and its potential importance in this respect. Although strictly cryptic species may be considered as species which can be distinguished only by molecular data, we accept the far looser but more practical definition of species that cannot be readily distinguished morphologically. Cryptic species appear to have been identified most frequently as occurring in separate host species; this is heartening in that this has no significant impact on tagging studies. But cryptic species have occasionally been identified in single hosts sympatrically and are relatively common in geographically distinct populations of the same host species. Ignorance of both kinds of occurrences has the capacity to undermine the reliability of tagging analysis. We review in detail what is known of intra- and interspecific genetic variation over geographical ranges in the trematodes, based on recent molecular studies. Although the existence of cryptic species and evidence of intraspecific variability may appear daunting, we suspect that these complexities will add, and indeed have already added, to the sophistication of the information that can be derived from tagging studies.

Type
Fisheries
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiken, H. M., Bott, N. J., Mladineo, I., Montero, F. E., Nowak, B. F. and Hayward, C. J. (2007). Molecular evidence for cosmopolitan distribution of platyhelminth parasites of tunas (Thunnus spp.). Fish and Fisheries 8, 167180.Google Scholar
Baldwin, R. E., Rew, M. B., Johansson, M. L., Banks, M. A. and Jacobson, K. C. (2011). Population structure of three species of Anisakis nematodes recovered from Pacific sardines (Sardinops sagax) distributed throughout the California current system. Journal of Parasitology 97, 545554.Google Scholar
Baverstock, P. R., Adams, M. and Beveridge, I. (1985). Biochemical differentiation in bile-duct cestodes and their marsupial hosts. Molecular Biology and Evolution 2, 321337.Google ScholarPubMed
Bott, N. J., Miller, T. L. and Cribb, T. H. (2013). Bucephalidae (Platyhelminthes: Digenea) of Plectropomus (Serranidae: Epinephelinae) in the tropical Pacific. Parasitology Research 112, 25612584.Google Scholar
Bray, R. A. and Rollinson, D. (1985). Enzyme electrophoresis as an aid to distinguishing species of Fellodistomum, Steringotrema and Steringophorus (Digenea: Fellodistomidae). International Journal for Parasitology 15, 255263.CrossRefGoogle Scholar
Bueno-Silva, M., Boeger, W. A. and Pie, M. R. (2011). Choice matters: incipient speciation in Gyrodactylus corydori (Monogenoidea: Gyrodactylidae). International Journal for Parasitology 41, 657667.Google Scholar
Calhoun, D. M., Curran, S. S., Pulis, E. E., Provaznik, J. M. and Franks, J. S. (2013). Hirudinella ventricosa (Pallas, 1774) Baird, 1853 represents a species complex based on ribosomal DNA. Systematic Parasitology 86, 197208.CrossRefGoogle ScholarPubMed
Carreras-Aubets, M., Repulles-Albelda, A., Kostadinova, A. and Carrasson, M. (2011). A new cryptic species of Aponurus Looss, 1907 (Digenea: Lecithasteridae) from Mediterranean goatfish (Teleostei: Mullidae). Systematic Parasitology 79, 145159.CrossRefGoogle ScholarPubMed
Chambers, C. B. and Cribb, T. H. (2006). Phylogeny, evolution and biogeography of the Quadrifoliovariinae Yamaguti, 1965 (Digenea: Lecithasteridae). Systematic Parasitology 63, 6182.Google Scholar
Colborn, J., Crabtree, R. E., Shaklee, J. B., Pfeiler, E. and Bowen, B. W. (2001). The evolutionary enigma of bonefishes (Albula spp.): cryptic species and ancient separations in a globally distributed shorefish. Evolution 55, 807820.Google Scholar
Cribb, T. H., Anderson, G. R., Adlard, R. D. and Bray, R. A. (1998). A DNA-based demonstration of a three-host life-cycle for the Bivesiculidae (Platyhelminthes: Digenea). International Journal for Parasitology 28, 17911795.CrossRefGoogle ScholarPubMed
Criscione, C. D. and Blouin, M. S. (2007). Parasite phylogeographical congruence with salmon host evolutionarily significant units: implications for salmon conservation. Molecular Ecology 16, 9931005.Google Scholar
Criscione, C. D., Cooper, B. and Blouin, M. S. (2006). Parasite genotypes identify source populations of migratory fish more accurately than fish genotypes. Ecology 87, 823828.CrossRefGoogle ScholarPubMed
Curran, S. S., Tkach, V. V. and Overstreet, R. M. (2013). Molecular evidence for two cryptic species of Homalometron (Digenea: Apocreadiidae) in freshwater fishes of the southeastern United States. Comparative Parasitology 80, 186195.Google Scholar
Detwiler, J. T., Bos, D. H. and Minchella, D. J. (2010). Revealing the secret lives of cryptic species: examining the phylogenetic relationships of echinostome parasites in North America. Molecular Phylogenetics and Evolution 55, 611620.CrossRefGoogle ScholarPubMed
Downie, A. J., Bray, R. A., Jones, B. E. and Cribb, T. H. (2011). Taxonomy, host-specificity and biogeography of Symmetrovesicula Yamaguti, 1938 (Digenea: Fellodistomidae) from chaetodontids (Teleostei: Perciformes) in the tropical Indo-west Pacific region. Systematic Parasitology 78, 118.CrossRefGoogle ScholarPubMed
Glennon, V., Perkins, E. M., Chisholm, L. A. and Whittington, I. D. (2008). Comparative phylogeography reveals host generalists, specialists and cryptic diversity: hexabothriid, microbothriid and monocotylid monogeneans from rhinobatid rays in southern Australia. International Journal for Parasitology 38, 15991612.CrossRefGoogle ScholarPubMed
Henriquez, V. P., Gonzalez, M. T., Licandeo, R. and Carvajal, J. (2011). Metazoan parasite communities of rock cod Eleginops maclovinus along southern Chilean coast and their use as biological tags at a local spatial scale. Journal of Fish Biology 79, 18511865.Google Scholar
Hunter, J. A. and Cribb, T. H. (2012). A cryptic complex of species related to Transversotrema licinum Manter, 1970 from fishes of the Indo-West Pacific, including descriptions of ten new species of Transversotrema Witenberg, 1944 (Digenea: Transversotrematidae). Zootaxa 3176, 144.CrossRefGoogle Scholar
Hunter, J. A., Ingram, E., Adlard, R. D., Bray, R. A. and Cribb, T. H. (2010). A cryptic complex of Transversotrema species (Digenea: Transversotrematidae) on labroid, haemulid and lethrinid fishes in the Indo-West Pacific Region, including the description of three new species. Zootaxa 2652, 1732.CrossRefGoogle Scholar
Huyse, T. and Volckaert, F. A. M. (2002). Identification of a host-associated species complex using molecular and morphometric analyses, with the description of Gyrodactylus rugiensoides n. sp (Gyrodactylidae, Monogenea). International Journal for Parasitology 32, 907919.CrossRefGoogle Scholar
Ishida, Y., Oleksyk, T. K., Georgiadis, N. J., David, V. A., Zhao, K., Stephens, R. M., Kolokotronis, S. O. and Roca, A. L. (2011). Reconciling apparent conflicts between mitochondrial and nuclear phylogenies in African elephants. Plos One 6, 116.CrossRefGoogle ScholarPubMed
Jousson, O. and Bartoli, P. (2002). Species diversity among the genus Monorchis (Digenea: Monorchiidae) parasitic in marine teleosts: molecular, morphological and morphometrical studies with a description of Monorchis blennii n. sp. Parasitology Research 88, 230241.Google ScholarPubMed
Jousson, O., Bartoli, P. and Pawlowski, J. (2000). Cryptic speciation among intestinal parasites (Trematoda: Digenea) infecting sympatric host fishes (Sparidae). Journal of Evolutionary Biology 13, 778785.CrossRefGoogle Scholar
Justine, J. L. (2007). Parasite biodiversity in a coral reef fish: twelve species of monogeneans on the gills of the grouper Epinephelus maculatus (Perciformes: Serranidae) off New Caledonia, with a description of eight new species of Pseudorhabdosynochus (Monogenea: Diplectanidae). Systematic Parasitology 66, 81129.CrossRefGoogle Scholar
Klimpel, S. and Palm, H. W. (2011). Anisakid nematode (Ascaridoidea) life cycles and distribution: increasing zoonotic potential in the time of climate change? In Progress in Parasitology (ed. Mehlhorn, H.), pp. 223250. Parasitology Research Monographs 2. Springer Verlag, Berlin, Germany. doi: 10.1007/978-3-642-21396-0_11.Google Scholar
Lester, R. J. G. and MacKenzie, K. (2009). The use and abuse of parasites as stock markers for fish. Fisheries Research 97, 12.Google Scholar
Leung, T. L. F., Keeney, D. B. and Poulin, R. (2009). Cryptic species complexes in manipulative echinostomatid trematodes: when two become six. Parasitology 136, 241252.Google Scholar
Lo, C. F., Morgan, J. A. T., Galzin, R. and Cribb, T. H. (2001). Identical digeneans in coral reef fishes from French Polynesia and the Great Barrier Reef (Australia) demonstrated by morphology and molecules. International Journal for Parasitology 31, 15731578.Google Scholar
Locke, S. A., McLaughlin, J. D. and Marcogliese, D. J. (2010). DNA barcodes show cryptic diversity and a potential physiological basis for host specificity among Diplostomoidea (Platyhelminthes: Digenea) parasitizing freshwater fishes in the St. Lawrence River, Canada. Molecular Ecology 19, 28132827.Google Scholar
MacKenzie, K. (2002). Parasites as biological tags in fish population studies. An update. Parasitology 124, S153S163.CrossRefGoogle ScholarPubMed
MacKenzie, K. and Abaunza, P. (1998). Parasites as biological tags for stock discrimination of marine fish: a guide to procedures and methods. Fisheries Research 38, 4556.CrossRefGoogle Scholar
MacKenzie, K., Brickle, P., Hemmingsen, W. and George-Nascimento, M. (2013). Parasites of hoki, Macruronus magellanicus, in the Southwest Atlantic and Southeast Pacific Oceans, with an assessment of their potential value as biological tags. Fisheries Research 145, 15.CrossRefGoogle Scholar
Marques, J. F., Santos, M. J., Gibson, D. I., Cabral, H. N. and Olson, P. D. (2007). Cryptic species of Didymobothrium rudolphii (Cestoda: Spathebothriidea) from the sand sole, Solea lascaris, off the Portuguese coast, with an analysis of their molecules, morphology, ultrastructure and phylogeny. Parasitology 134, 10571072.CrossRefGoogle ScholarPubMed
Marshall, A. D., Compagno, L. J. V. and Bennett, M. B. (2009). Redescription of the genus Manta with resurrection of Manta alfredi (Krefft, 1868) (Chondrichthyes; Myliobatoidei; Mobulidae). Zootaxa 2301, 128.Google Scholar
Martínez-Aquino, A., Reyna-Fabián, M. E., Rosas-Valdez, R., Razo-Mendivil, U., Pérez-Ponce de León, G. and García-Varela, M. (2009). Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences. Journal of Parasitology 95, 10401047. doi: 10.1645/GE-1926.1.Google Scholar
Mattiucci, S., Farina, V., Campbell, N., MacKenzie, K., Ramos, P., Pinto, A. L., Abaunza, P. and Nascetti, G. (2008). Anisakis spp. larvae (Nematoda: Anisakidae) from Atlantic horse mackerel: their genetic identification and use as biological tags for host stock characterization. Fisheries Research 89, 146151.Google Scholar
McNamara, M. K. A., Miller, T. L. and Cribb, T. H. (2014). Evidence for extensive cryptic speciation in trematodes of butterflyfishes (Chaetodontidae) of the tropical Indo-West Pacific. International Journal for Parasitology 44, 3748.Google Scholar
Miller, T. L. and Cribb, T. H. (2007 a). Coevolution of Retrovarium n. gen. (Digenea: Cryptogonimidae) in Lutjanidae and Haemulidae (Perciformes) in the Indo-West Pacific. International Journal for Parasitology 37, 10231045.Google Scholar
Miller, T. L. and Cribb, T. H. (2007 b). Two new cryptogonimid genera (Digenea, Cryptogonimidae) from Lutjanus bohar (Perciformes, Lutjanidae): analyses of ribosomal DNA reveals wide geographic distribution and presence of cryptic species. Acta Parasitologica 52, 104113.Google Scholar
Miller, T. L. and Cribb, T. H. (2008). Eight new species of Siphoderina Manter, 1934 (Digenea, Cryptogonimidae) infecting Lutjanidae and Haemulidae (Perciformes) off Australia. Acta Parasitologica 53, 344364.Google Scholar
Miller, T. L. and Cribb, T. H. (2009). Gynichthys diakidnus n. g., n. sp (Digenea: Cryptogonimidae) from the grunt Plectorhinchus gibbosus (Lacepède, 1802) (Perciformes: Haemulidae) off the Great Barrier Reef, Australia. Systematic Parasitology 74, 103112.Google Scholar
Miller, T. L., Downie, A. J. and Cribb, T. H. (2009). Morphological disparity despite genetic similarity; new species of Lobosorchis Miller & Cribb, 2005 (Digenea: Cryptogonimidae) from the Great Barrier Reef and the Maldives. Zootaxa 1992, 3752.Google Scholar
Miller, T. L., Adlard, R. D., Bray, R. A., Justine, J. L. and Cribb, T. H. (2010 a). Cryptic species of Euryakaina n. g. (Digenea: Cryptogonimidae) from sympatric lutjanids in the Indo-West Pacific. Systematic Parasitology 77, 185204.Google Scholar
Miller, T. L., Bray, R. A., Justine, J. L. and Cribb, T. H. (2010 b). Varialvus gen. nov. (Digenea: Cryptogonimidae), from species of Lutjanidae (Perciformes) off the Great Barrier Reef, New Caledonia and Maldives. Acta Parasitologica 55, 327339.Google Scholar
Miller, T. L., Bray, R. A. and Cribb, T. H. (2011). Taxonomic approaches to and interpretation of host-specificity of trematodes of fishes: lessons from the Great Barrier Reef. Parasitology 138, 17101722.Google Scholar
Miura, O., Kuris, A. M., Torchin, M. E., Hechinger, R. F., Dunham, E. J. and Chiba, S. (2005). Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse). International Journal for Parasitology 35, 793801.Google Scholar
Nadler, S. A. and Pérez-Ponce de León, G. (2011). Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138, 16881709. doi: 10.1017/S003118201000168X.Google Scholar
Nolan, M. J. and Cribb, T. H. (2005). The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Advances in Parasitology 60, 101163.Google Scholar
Nolan, M. J. and Cribb, T. H. (2006 a). Cardicola Short, 1953 and Braya n. gen. (Digenea: Sanguinicolidae) from five families of tropical Indo-Pacific fishes. Zootaxa 1265, 180.Google Scholar
Nolan, M. J. and Cribb, T. H. (2006 b). An exceptionally rich complex of Sanguinicolidae von Graff, 1907 (Platyhelminthes: Trematoda) from Siganidae, Labridae and Mullidae (Teleostei: Perciformes) from the Indo-west Pacific Region. Zootaxa 1218, 180.Google Scholar
Palm, H. W. (2011). Fish parasites as biological indicators in a changing world: Can we monitor environmental impact and climate change? In Progress in Parasitology (ed. Mehlhorn, H.), pp. 223250. Parasitology Research Monographs 2. Springer Verlag, Berlin, Germany. doi: 10.1007/978-3-642-21396-0_12.Google Scholar
Pérez-Ponce de León, G. and Nadler, S. A. (2010). What we don't recognize can hurt us: a plea for awareness about cryptic species. Journal of Parasitology 96, 453464.CrossRefGoogle Scholar
Poulin, R. (2011). Uneven distribution of cryptic diversity among higher taxa of parasitic worms. Biology Letters 7, 241244. doi: 10.1098/rsbl.2010.0640.Google Scholar
Razo-Mendivil, U., Vazquez-Dominguez, E., Rosas-Valdez, R., Pérez-Ponce de León, G. and Nadler, S. A. (2010). Phylogenetic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of Middle-American cichlids. International Journal for Parasitology 40, 471486.Google Scholar
Reversat, J., Leducq, R., Marin, R. and Renaud, F. (1991). A new methodology for studying parasite specificity and life cycles of trematodes. International Journal for Parasitology 21, 467469.Google Scholar
Reyda, F. B. and Caira, J. N. (2006). Five new species of Acanthobothrium (Cestoda: Tetraphyllidea) from Himantura uarnacoides (Myliobatiformes: Dasyatidae) in Malaysian Borneo. Comparative Parasitology 73, 4971.Google Scholar
Rosas-Valdez, R., Choudhury, A. and Pérez-Ponce de León, G. (2011). Molecular prospecting for cryptic species in Phyllodistomum lacustri (Platyhelminthes, Gorgoderidae). Zoologica Scripta 40, 296305.Google Scholar
Schoelinck, C., Cruaud, C. and Justine, J. L. (2012). Are all species of Pseudorhabdosynochus strictly host specific? – A molecular study. Parasitology International 61, 356359.Google Scholar
Shirakashi, S., Tsunemoto, K., Webber, C., Rough, K., Ellis, D. and Ogawa, K. (2013). Two species of Cardicola (Trematoda: Aporocotylidae) found in Southern Bluefin Tuna Thunnus maccoyii ranched in South Australia. Fish Pathology 48, 14.Google Scholar
Suzuki, J., Murata, R., Hosaka, M. and Araki, J. (2010). Risk factors for human Anisakis infection and association between the geographic origins of Scomber japonicus and anisakid nematodes. International Journal of Food Microbiology 137, 8893.CrossRefGoogle ScholarPubMed
Vainola, R., Valtonen, E. T. and Gibson, D. I. (1994). Molecular systematics in the acanthocephalan genus Echinorhynchus (sensu lato) in northern Europe. Parasitology 108, 105114.CrossRefGoogle ScholarPubMed
Vilas, R., Criscione, C. D. and Blouin, M. S. (2005). A comparison between mitochondrial DNA and the ribosomal internal transcribed regions in prospecting for cryptic species of platyhelminth parasites. Parasitology 131, 839846.CrossRefGoogle ScholarPubMed
Wayland, M. T., Gibson, D. I. and Sommerville, C. (2005). Morphometric discrimination of two allozymically diagnosed sibling species of the Echinorhynchus gadi Zoega in Muller complex (Acanthocephala) in the North Sea. Systematic Parasitology 60, 139149.Google Scholar
Yao, H., Song, J. Y., Liu, C., Luo, K., Han, J. P., Li, Y., Pang, X. H., Xu, H. X., Zhu, Y. J., Xiao, P. G. and Chen, S. L. (2010). Use of ITS2 region as the universal DNA barcode for plants and animals. Plos One 5, 19.Google Scholar
Zischke, M. T., Griffiths, S. P., Tibbetts, I. R. and Lester, R. J. G. (2013). Stock identification of wahoo (Acanthocybium solandri) in the Pacific and Indian Oceans using morphometrics and parasites. ICES Journal of Marine Science 70, 164172.Google Scholar