Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-18T06:13:48.872Z Has data issue: false hasContentIssue false

Digestion in the Tsetse-Fly: A Study of Structure and Function

Published online by Cambridge University Press:  06 April 2009

V. B. Wigglesworth
Affiliation:
From the Department of Medical Entomology, London School of Hygiene and Tropical Medicine.

Extract

The anatomy, histology and digestive enzymes of the mid-intestine of the tsetse-fly have been investigated, and an attempt has been made to determine the functions of the various parts and to observe the changes to which they are subject during the digestion of blood.

Histologically the mid-gut of Glossina consists of three regions:

(i) An anterior segment of small, pale-staining, irregularly columnar cells, which comprises about half the total length of the mid-gut. The zone of giantcells containing bacteroids, which is very limited in extent, lies at about the middle of this region.

(ii) A middle segment of large, deeply staining cells, heaped together in the resting state, which is separated abruptly from the anterior segment.

(iii) A posterior segment, arising by gradual transition from the middle segment, composed of regular columnar cells.

After a meal the blood is concentrated by the removal of fluid in the anterior segment but it shows no other change in this region. The giant-cells are greatly flattened but they do not regularly discharge the bacteroids which they contain and there is no evidence that these organisms play any part in the digestion of blood. Their possible function has been discussed.

During digestion the cells in the middle segment contain globules of secretion, and vacuolated buds of cytoplasm are set free and disintegrate in the lumen. The blood shows an abrupt change on reaching this region; it turns black where it is in contact with the epithelium and amorphous masses of altered blood pigment are deposited.

In the posterior segment, the epithelial cells become greatly vacuolated later in digestion and are probably concerned chiefly in absorption.

The distribution of digestive enzymes agrees with these histological observations. The salivary glands and proventriculus contain no digestive enzymes, and the anterior and posterior segments of the mid-gut also are practically inactive. But the middle segment produces a very active tryptase which agrees in its pH-activity curve and other properties with the tryptase of the cockroach. A peptidase also is present but, except for a very weak amylase, enzymes acting upon carbohydrates are absent. The contents of the mid-gut are always slightly acid (about pH 6·5) and the tryptase present is well adapted to work at this reaction.

These findings have been contrasted with those in a non-blood-sucking muscid (Calliphora). Here the salivary glands secrete an active amylase and the mid-gut is rich in amylase, invertase and maltase, whereas the proteolytic enzymes are extremely weak.

Some observations have been made upon the tracheal supply to the walls of the gut. The epithelial cells of the middle segment have been shown to contain a very rich supply of intracellular tracheoles. These are usually difficult to make out in the resting cells but after a large meal the surface of the cells is ruptured and blood pigment enters the tracheoles and may extend to the sub-epithelial tracheoles and tracheae or even to quite large tracheal trunks. As the epithelial cells are flattened by the pressure of the meal, this pigment is set free in the lumen in the form of dark rods of haematin, which often bear a superficial resemblance to bacteria. The pigment in the deeper tubes appears to be slowly absorbed later. Intracellular tracheoles similar to these are present also in the mid-gut of Calliphora.

The proventriculus in Glossina is a complex and has always been a puzzling structure. It has been shown that it acts as a sphincter between the fore-gut and mid-gut and that it is responsible for the production of the peritrophic membrane. This membrane, which is composed of chitin but contains a small quantity of protein, is secreted in the form of a fluid by the ring of large epithelial cells at the base of the proventriculus. The fluid is pressed and condensed to form a uniform membrane by being drawn through the cleft between the wall of the proventriculus and the funnel-shaped invagination of the fore-gut.

The function of the peritrophic membrane has been discussed and it has been shown that it is freely permeable to digestive enzymes and to haemoglobin.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1929

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athanasiu, I. and Dragoiu, I. (1913). Sur les capillaires aériens des fibres musculaires chez les insectes. C. R. Soc. Biol. 75, 578582.Google Scholar
Bassi, C. (1851). Rapport relatif au passage des substances introduites dans le système trachéen des insectes. Ann. Sci. Nat. Zool. (3), 15, 362371.Google Scholar
Berlese, A. (1909). Gli Insetti. Vol. 1. Embryologiae Morphologia. Milan. Soc. Ed. Lib.Google Scholar
Buchner, P. (1921). Tier und Pflanze in intracellularer Symbiose. Berlin, 1921. 460 pp.Google Scholar
Buchner, P. (1922). Haemophagie und Symbiose. Die Naturwissenschaften, 10, 703710.CrossRefGoogle Scholar
Chun, , (1875). Über die Rektaldrüsen bei den Insecten. Inaug. Dissert. Frankfurt a. M.Google Scholar
Cowdry, E. V. (1925). A group of Micro-organisms transmitted hereditarily in Ticks and apparently unassociated with Disease. J. Exp. Med. 41, 817830.CrossRefGoogle Scholar
Cragg, F. W. (1920). Secretion and Epithelial Regeneration in the Mid-intestine of Tabanus. Ind. J. Med. Res. 7, 648663.Google Scholar
Davis, W. M. (1927). On the Tracheal System of Collembola with special reference to that of Sminthurus viridis Lubb. Q. J. Micr. Sci. 71, 1530.Google Scholar
Van Gehuchten, A. (1890). Recherches histologiques sur l'appareil digestif de la larve de la Ptychoptera contaminata. La Cellule, 6, 185290.Google Scholar
Giles, G. M. (1906). The Anatomy of the Biting Flies of the Genera Stomoxys and Glossina. J. Trop. Med. 9, 182185.Google Scholar
Graham-Smith, G. S. (1913). Flies and Disease.: Non-bloodsucking Flies. Cambridge.CrossRefGoogle Scholar
Hewitt, C. G. (1907). Structure, Development and Bionomics of the House-fly, Musca domestica Linn. Part I. The Anatomy of the Fly. Q. J. Micr. Sci. 51, 395448.Google Scholar
Holmgren, E. (1907). Über die Trophospongien der quergestreiften Muskelfasern, nebst Bemerkungen über den allgemeinen Bau dieser Fasern. Arch. f. mikrosk. Anat. 71,165247.CrossRefGoogle Scholar
Koeppen, A. (1921). Die feineren Verästelungen der Traeheen nach Untersuchungen an Dytiscus marginalis L. Zool. Anz. 52, 132139.Google Scholar
Kuskop, M. (1923). Bakteriensymbiosen bei Wanzen (Hemiptera heteroptera). Arch. f. Protistenkunde, 47, 350384.Google Scholar
Lester, H. M. O. and Lloyd, Ll. (1928). Notes on the Process of Digestion in Tsetse-flies. Bull. Ent. Res. 19, 3960.CrossRefGoogle Scholar
Lowne, B. T. (18901895). The Anatomy, Physiology and Development of the Blow-fly. 2 Vols. London.Google Scholar
Martin, J. (1893). Les trachées et la respiration trachéenne. C. R. Soc. Philomath. 6, 3.Google Scholar
Minchin, E. A. (1905). Report on the Anatomy of the Tsetse-fly (Glossina palpalis). Proc. Roy. Soc. B, 76, 531547.Google Scholar
Patton, W. S. and Cragg, F. W. (1913). A Textbook of Medical Entomology. Madras.Google Scholar
Petrunkewitsch, A. (1899). Die Verdauungsorgane von Periplaneta orientalis und Blatta germanica. Zool. Jahrb., Abt. Anat. 13, 171190.Google Scholar
Portier, P. (1919). Développement complet des larves de Tenebrio molitor obtenu au moyen d'une nourriture stérilisée à haute temperature. C. R. Soc. Biol. 82, 5960.Google Scholar
Prenant, A. (1900). Cellules trachéales des Oestres. Arch. d'Anat. Microsc. 3, 293336.Google Scholar
Reichenow, E. (1922). Intracelluläre Symbionten bei blutsaugenden Milben u. Egeln. Arch.f. Protistenkunde, 45, 95116.Google Scholar
Remy, P. (1925). Contribution à l'étude de l'appareil respiratoire et de la respiration chez quelques invertébrés. Nancy. 220 pp.Google Scholar
Riede, E. (1912). Vergleichende Untersuchung der Sauerstoffversorgung in den Insectenovarien. Zool. Jahrb., Abt. Allg. Zool. 32, 231310.Google Scholar
Roubaud, E. (1919). Les particularités de la nutrition et de la vie syinbiotique chez les mouches tsétsés. Ann. de l'lnst. Past. 33, 489536.Google Scholar
Sander, L. (1905). Die Tsetsen (Glossinae, Wiedermann). Arch.f. Schiffs- u. Tropen-Hyg. 9, 193218.Google Scholar
Sanford, E. W. (1918). Experiments on the Physiology of Digestion in the Blattidae. J. Exp. Zool. 25, 355401.CrossRefGoogle Scholar
Sikora, H. (1919). Vorläufige Mitteilung über Mycetome bei Pediculinen. Biol. Centralbl. 39, 287288.Google Scholar
Stuhlmann, F. (1907). Beiträge zur Kenntnis der Tsetsefliege (G. fusca und G. tachinoides). Arbeit. a. d. kaiserl. Gesundh. 26, 301383.Google Scholar
Vicnon, P. (1901). Recherches de cytologie générate sur les épithéliums. Arch. de Zool. Exp. et Gén. (3), 9, 371715.Google Scholar
Wester, D. H. (1910). Über die Verbreitung u. Lokalisation des Chitins im Tierreiche. Zool. Jahrb., Abt. Syst. 28, 531557.Google Scholar
Wigglesworth, V. B. (1927, 1). Digestion in the Cockroach. I. The Hydrogen-Ion Concentration in the Alimentary Canal. Biochem. J. 21, 791796.CrossRefGoogle ScholarPubMed
Wigglesworth, V. B. (1927,2). Digestion in the Cockroach. II. The Digestion of Carbohydrates. Biochem. J. 21, 797811.CrossRefGoogle Scholar
Wigglesworth, V. B. (1928). Digestion in the Cockroach. III. The Digestion of Proteins and Fats. Biochem. J. 22, 150161.CrossRefGoogle Scholar
Yorke, W. and Macfie, J. W. S. (1924). The Action of the Salivary Secretion of Mosquitos and of Glossina tachinoides on Human Blood. Ann. Trop. Med. and Parasit. 18, 103108.CrossRefGoogle Scholar
Zander, E. (1897). Vergleichende und kritische Untersuchungen zum Verständnisse der Jodreaktion des Chitins. Arch. f. ges. Physiol. 66, 545573.CrossRefGoogle Scholar