Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T23:16:34.605Z Has data issue: false hasContentIssue false

Immunocytochemical demonstration of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea)

Published online by Cambridge University Press:  06 April 2009

R. M. Magee
Affiliation:
1Department of Biology
I. Fairweather
Affiliation:
1Department of Biology
C. F. Johnston
Affiliation:
2Department of Medicine, The Queen's University, Belfast BT7 1NN
D. W. Halton
Affiliation:
1Department of Biology
C. Shaw
Affiliation:
2Department of Medicine, The Queen's University, Belfast BT7 1NN

Summary

The localization and distribution of neuropeptides in the nervous system of the liver fluke, Fasciola hepatica at different stages in the development of the adult fluke have been determined by an indirect immunofluorescence technique, using antisera to 19 vertebrate peptides and the invertebrate neuropeptide, FMRFamide. Positive immunoreactivity was obtained with antisera to pancreatic polypeptide (PP), peptide tyrosine tyrosine (PYY), substance P (SP) and FMRFamide. Cell bodies and nerve fibres immunoreactive to the 4 peptides are present in the anterior ganglia and the 3 pairs of longitudinal nerve cords and their commissures in the central nervous system. In the peripheral nervous system, immunoreactivity occurs in the nerve plexuses supplying the subtegumental musculature, the oral and ventral suckers, and the muscular lining of the male and female reproductive ducts, including the ootype, uterus, cirrus pouch and gonopore. Cells displaying immunoreactivity to PYY and FMRFamide lie amongst the Mehlis' gland cells that surround the ootype. Processes from these cells extend into the wall of the ootype. One group of PP-immunoreactive cells occurs at the junction of the vitelline and ovovitelline ducts, whilst another group is situated at the entrance to the uterus from the ootype. The results are discussed in relation to the possible roles of the peptides in the neurophysiology and egg production of the fluke.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bautz, A., Schilt, J., Richoux, J.-P. & Dubois, M.-P. (1980). Détection immunocytologique, dénombrement et localisation des cellules à somatostatine (SRIF) chez deux espèces de Planaires, Dugesia lugubris et Dendrocoelum lacteum (Turbellariès, Triclades). Comptes rendus des Sèances de l' Acadèmie des Sciences 291, 833–6.Google Scholar
Bennett, J. L. & Gianutsos, G. (1977). Distribution of catecholamines in immature Fasciola hepatica: a histochemical and biochemical study. International Journal for Parasitology 7, 221–5.Google Scholar
Calabrese, R. L., Kuhlman, J. R. & Li, C. (1984). FMRFamide-like substances in the leech: bioactivity on the heartbeat system. Neuroscience 10, 151.Google Scholar
Carraway, R., Ruane, S. E. & Kim, H.-R. (1982). Distribution and immunochemical character of neurotensin-like material in representative vertebrates and invertebrates: apparent conservation of the COOH-terminal region during evolution. Peptides 1, 115–23.CrossRefGoogle Scholar
Clegg, J. A. (1965) Secretion of lipoprotein by Mehlis' gland in Fasciola hepatica. Annals of the New York Academy of Sciences 118, 969–86.CrossRefGoogle ScholarPubMed
Coons, A. H., Leduc, E. H. & Connolly, J. M. (1955). Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. Journal of Experimental Medicine 102, 4960.Google Scholar
Davenport, T. R. B., Lee, D. L. & Isaac, R. E. (1988). Immunocytochemical demonstration of a neuropeptide in Ascaris suum (Nematoda) using an antiserum to FMRFamide. Parasitology 97, 81–8.Google Scholar
Dixon, K. E. & Mercer, E. H. (1965). The fine structure of the nervous system of the cercaria of the liver fluke, Fasciola hepatica L. Journal of Parasitology 51, 967–76.Google Scholar
Dockray, G. J., Vaillant, C. & Williams, R. G. (1981). New vertebrate brain-gut peptide related to a molluscan neuropeptide and an opioid peptide. Nature, London 293, 656–7.CrossRefGoogle Scholar
Dockray, G. J. & Williams, R. G. (1983). FMRFamide-like immunoreactivity in rat brain: development of a radioimmunoassay and its application in studies of distribution and chromatographic properties. Brain Research 266, 295303.Google Scholar
Ebberink, R. H. M., Price, D. A., Van Loenhout, H., Doble, K. E., Riehm, J. P., Geraerts, W. P. M. & Greenberg, M. J. (1987). The brain of Lymnaea contains a family of FMRFamide-like peptides. Peptides 8, 515–22.CrossRefGoogle ScholarPubMed
Fairweather, I., Macartney, G. A., Johnston, C. F., Halton, D. W. & Buchanan, K. D. (1988). Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) and vertebrate neuropeptides in the nervous system of excysted cysticercoid larvae of the rat tapeworm, Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitology Research 74, 371–9.CrossRefGoogle ScholarPubMed
Fairweather, I., Maule, A. G., Mitchell, S. H., Johnston, C. F. & Halton, D. W. (1987). Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) in the nervous system of the liver fluke, Fasciola hepatica (Trematoda, Digenea). Parasitology Research 73, 255–8.Google Scholar
Gianutsos, G. & Bennett, J. L. (1977). The regional distribution of dopamine and norepinephrine in Schistosoma mansoni and Fasciola hepatica. Comparative Biochemistry and Physiology 58C, 157–9.Google Scholar
Gönnert, R. (1962). Histologische Untersuchungen über den Feinbau der Einbildungsstätte (Oogenotop) von Fasciola hepatica. Zeitschrift für Parasitenkunde 21, 475–92.CrossRefGoogle Scholar
Grasso, M. (1967 a). Prime indagini sulla presenza di cellule neurosecretrici in Fasciola hepatica. Atti dell' Accademia nazionale dei Lincei. Rendiconti della Classe di Scienze Fisiche Matematiche e Naturali 42, 85–7.Google Scholar
Grasso, M. (1967 b). Distribuzione e attività delle cellule neurosecretrici in Fasciola hepatica. Atti dell' Accademia nazionale dei Lincei. Rendiconti della Classe di Scienze Fisiche Matematiche e Naturali 42, 903–5.Google Scholar
Grasso, M. & Quaglia, A. (1972). Ultrastructural studies in neurosecretion and gamete ripening in Platyhelminthes. General and Comparative Endocrinology 18, 593–4.Google Scholar
Grasso, M. & Quaglia, M. (1974). Osservazioni al microscopio elettronico sui fenomeni di neurosecrezione in Fasciola hepatica. Parassitologia 16, 113–15.Google Scholar
Gresson, R. A. R. & Threadgold, L. T. (1964). The large neurones and interstitial material of Fasciola hepatica L. Proceedings of the Royal Society of Edinburgh 42B, 261–6.Google Scholar
Grimmelikhuijzen, C. J. P. (1986). FMRFamide-like peptides in the primitive nervous systems of coelenterates and complex nervous systems of higher animals. In Handbook of Comparative Opioid and Related Neuropeptide Mechanisms, vol. 1 (ed. Stefano, G. B.), pp. 103115. Boca Raton, Florida: CRC Press.Google Scholar
Grimmelikhuijzen, C. J. P., Balfe, A., Emson, P. C., Powell, D. & Sundler, F. (1981). Substance P-like immunoreactivity in the nervous system of hydra. Histochemistry 71, 325–33.Google Scholar
Grimmelikhuijzen, C. J. P. & Graff, D. (1985). Arg-Phe-amide-like peptides in the primitive nervous systems of coelenterates. Peptides 6, Suppl. 3yes, 477–83.Google Scholar
Grimmelikhuijzen, C. J. P., Graff, D., Groeger, A., Hahn, M., Anctil, M., Mcfarlane, I. D. & Spencer, A. N. (1987). Novel neuropeptides from coelenterates. Biological Chemistry Hoppe-Seyler 368, 1283–4.Google Scholar
Gustafsson, M. K. S. (1987). Immunocytochemical demonstration of neuropeptides and serotonin in the nervous system of adult Schistosoma mansoni. Parasitology Research 74, 168–74.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S., Lehtonen, M. A. I. & Sundler, F. (1986). Immunocytochemical evidence for the presence of ‘ mammalian’ neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 243, 41–9.CrossRefGoogle ScholarPubMed
Gustafsson, M. K. S., Wikgren, M. C., Karhi, T. J. & Schot, L. P. C. (1985). Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell and Tissue Research 240, 255–60.Google Scholar
Halton, D. W. (1967). Histochemical studies of carboxylic esterase activity in Fasciola hepatica. Journal of Parasitology 53, 1210–16.Google Scholar
Hanna, R. E. B. (1980). Fasciola hepatica: glycocalyx replacement in the juvenile as a possible mechanism for protection against host immunity. Experimental Parasitology 50, 103–14.Google Scholar
Happich, F. A. & Boray, J. C. (1969). Quantitative diagnosis of chronic fasciolosis. 2. The estimation of daily total egg production of Fasciola hepatica and the number of adult flukes in sheep by faecal egg counts. Australian Veterinary Journal 45, 329–31.CrossRefGoogle ScholarPubMed
Havet, J. (1900). Contribution à l'ètude du système nerveux des trèmatodes (Distomum hepaticum). La Cellule 17, 353–81.Google Scholar
Holmes, S. D. & Fairweather, I. (1984). Fasciola hepatica: The effects of neuropharmacological agents upon in vitro motility. Experimental Parasitology 58, 194208.Google Scholar
Iversen, L. L. (1982). Substance P. British Medical Bulletin 38, 277–82.Google Scholar
Jennings, J. B., Davenport, T. R. B. & Varndell, I. M. (1987). FMRFamide-like immunoreactivity and arylamidase activity in turbellarians and nemerteans – evidence for a novel neurovascular coordinating system in nemerteans. Comparative Biochemistry and Physiology 86C, 425–30.Google ScholarPubMed
Kaloustian, K. V. & Edmands, J. A. (1986). Immunochemical evidence for substance P-like peptide in tissues of the earthworm Lumbricus terrestris: action on intestinal contraction. Comparative Biochemistry and Physiology 83C, 329–33.Google Scholar
Kuhlman, J. R., Li, C. & Calabrese, R. L. (1985). FMRFamide-like substances in the leach. II. Bioactivity on the heartbeat system. Journal of Neuroscience 5, 2310–7.Google Scholar
Leach, L., Trudgill, D. L. & Gahan, P. B. (1987). Immunocytochemical localization of neurosecretory amines and peptides in the free-living nematode, Goodeyus ulmi. Histochemical Journal 19, 471–5.Google Scholar
Lehman, H. K. & Greenberg, M. J. (1987). The actions of FMRFamide-like peptides on visceral and somatic muscles of the snail Helix aspersa. Journal of Experimental Biology 131, 5568.Google Scholar
Lender, T. (1974). The role of neurosecretion in freshwater planarians. In Biology of the Turbellaria (ed. Riser, N. W. and Morse, M. P.), pp. 460475. New York: McGraw-Hill, Inc.Google Scholar
Lender, T. (1980). Endocrinologie des planaires. Bulletin de la Socieètè Zoologique de France 105, 173–91.Google Scholar
Mcfarlane, I. D., Graff, D. & Grimmelikhuijzen, C. J. P. (1987). Excitatory actions of Antho-RFamide, an anthozoan neuropeptide, on muscles and conducting systems in the sea anemone Calliactis parasitica. Journal of Experimental Biology 133, 157–68.Google Scholar
Magee, R. M., Foy, W. L., Fairweather, I., Johnston, C. F., Halton, D. W. & Buchanan, K. D. (1987) Substance P immunoreactivity in the liver fluke, Fasciola hepatica. Regulatory Peptides 18, 363.Google Scholar
Mansour, T. E. (1984) Serotonin receptors in parasitic worms. Advances in Parasitology 23, 136.Google ScholarPubMed
Mansour, T. E., Lago, A. D. & Hawkins, J. L. (1957). Occurrence and possible role of serotonin in Fasciola hepatica. Federation Proceedings 16, 319.Google Scholar
Mansour, T. E. & Stone, D. B. (1970). Biochemical effects of lysergic acid diethylamide on the liver fluke Fasciola hepatica. Biochemical Pharmacology 19, 1137–46.CrossRefGoogle Scholar
Nawa, H., Hirose, T., Takashima, H., Inayama, S. & Nakanishi, S. (1983). Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursor. Nature, London 306, 32–6.Google Scholar
O'donohue, T. L., Chronvall, B. M., Pruss, R. M., Mezey, E., Kiss, J. Z., Eiden, L. E., Massari, V. J., Tessel, R. E., Pickel, V. M., Di Maggio, D. A., Hotchkiss, A. J., Crowley, W. R. & Zukowska-Grojec, Z. (1985). Neuropeptide Y and peptide YY neuronal and endocrine systems. Peptides 6, 755–68.Google Scholar
Painter, S. D., Morley, J. S. & Price, D. A. (1982). Structure-activity relations of the molluscan neuropeptide FMRFamide on some molluscan muscles. Life Sciences 31, 2471–8.Google Scholar
Price, D. A. (1986). Evolution of a molluscan cardioregulatory neuropeptide. American Zoologist 26, 1007–15.Google Scholar
Price, D. A., Cottrell, G. A., Doble, K. E., Greenberg, M. J., Jorenby, W., Lehman, H. K. & Riehm, J. P. (1985). A novel FMRFamide-related peptide in Helix: pQDPFLRFamide. Biological Bulletin 169, 256–66.Google Scholar
Radlowski, J. (1975). Neurosecretory system in Fasciola hepatica Linnè. Zoologica Poloniae 25, 211–29.Google Scholar
Ramisz, A. & Szankowska, Z. (1970). Studies on the nervous system of Fasciola hepatica and Dicrocoelium dendriticum by means of histochemical method for active acetylcholinesterase. Acta Parasitologica Polonica 17, 217–23.Google Scholar
Reuter, M. (1987). Immunocytochemical demonstration of serotonin and neuropeptides in the nervous system of Gyrodactylus salaris (Monogenea). Acta Zoologica 68, 187–93.Google Scholar
Reuter, M., Karhi, T. & Schot, L. P. C. (1984). Immunocytochemical demonstration of peptidergic neurons in the central and peripheral nervous systems of the flatworm Microstomum lineare with antiserum to FMRF-amide. Cell and Tissue Research 238, 431–6.Google Scholar
Reuter, M., Lehtonen, M. & Wikgren, M. (1988). Immunocytochemical evidence of neuroactive substances in flatworms of different taxa – a comparison. Acta Zoologica 69, 2937.CrossRefGoogle Scholar
Reuter, M., Wikgren, M. & Lehtonen, M. (1986). Immunocytochemical demonstration of 5-HT-like and FMRF-amide-like substances in whole mounts of Microstomum lineare (Turbellaria). Cell and Tissue Research 246, 712.Google Scholar
Saló, E. & Baguñà, J. (1986). Stimulation of cellular proliferation and differentiation in the intact and regenerating planarian Dugesia (G) tigrina by the neuropeptide substance P. Journal of Experimental Zoology 237, 129–35.Google Scholar
Shyamasundari, K. & Rao, K. H. (1975). The structure and cytochemistry of the neurosecretory cells of Fasciola gigantica Cobbold and Fasciola hepatica L. Zeitschrift für Parasitenkunde 47, 103–9.Google Scholar
Smyth, J. D. & Halton, D. W. (1983). The Physiology of Trematodes. Cambridge: Cambridge University Press.Google Scholar
Thorndyke, M. C. & Whitfield, P. J. (1987) Vasoactive intestinal polypeptide-like immunoreactive tegumental cells in the digenean helminth Echinostoma liei: possible role in host–parasite interactions. General and Comparative Endocrinology 68, 202–7.Google Scholar
Threadgold, L. T. & Irwin, S. W. B. (1970). Electron microscope studies of Fasciola hepatica. IX. The fine structure of Mehlis' gland. Zeitschrift für Parasitenkunde 35, 1630.Google Scholar
Triepel, J. & Grimmelikhuijzen, C. J. P. (1984). Mapping of neurons in the central nervous system of the guinea pig by use of antisera specific to the molluscan neuropeptide FMRFamide. Cell and Tissue Research 237, 575–86.Google Scholar
Venturini, G., Carolei, A., Palladini, G., Margotta, V. & Lauro, M. G. (1983). Radioimmunological and immunocytochemical demonstration of met-enkephalin in planaria. Comparative Biochemistry and Physiology 74C, 23–5.Google Scholar
Webb, R. A. (1988). Endocrinology of Acoelomates. In Invertebrate Endocrinology, vol. 2, Endocrinology of Selected Invertebrate Types (ed. Downer, R. G. H. and Laufer, H.), pp. 3162. New York: Alan R. Liss, Inc.Google Scholar
Wikgren, M. C. & Reuter, M. (1985). Neuropeptides in a microturbellarian – whole mount immunocytochemistry. Peptides 6, Suppl. 3yes, 471–5.Google Scholar
Wikgren, M. C., Reuter, M. & Gustafsson, M. K. S. (1986). Neuropeptides in free-living and parasitic flatworms (Platyhelminthes). An immunocytochemical study. Hydrobiologia 132, 93–9.Google Scholar
Wilson, R. A. (1970). Fine structure of the nervous system and specialized nerve endings in the miracidium of Fasciola hepatica. Parasitology 60, 399410.Google Scholar
Yui, R., Iwanaga, T., Kuramoto, H. & Fujita, T. (1985). Neuropeptide immunocytochemistry in protostomian invertebrates, with special reference to insects and molluscs. Peptides 6, Suppl. 3yes, 411–15.CrossRefGoogle ScholarPubMed