Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-11T10:16:26.203Z Has data issue: false hasContentIssue false

A life-cycle stage-specific antigen of Theileria parva recognized by anti-macroschizont monoclonal antibodies

Published online by Cambridge University Press:  06 April 2009

S. Z. Shapiro
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE
K. Fujisaki
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE
S. P. Morzaria
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE
P. Webster
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE
T. Fujinaga
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE
P. R. Spooner
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE
A. D. Irvin
Affiliation:
International Laboratory for Research on Animal Diseases (ILRAD), P.O. Box 30709, Nairobi, KE

Summary

Four monoclonal antibodies, raised against macroschizonts of Theileria parva, were studied to characterize their antigen binding specificity. The indirect fluorescent antibody test showed that the antigen(s) recognized were present in the macroschizont stage of the parasite life-cycle but not in piroplasm, kinete or sporozoite stages. Immunoblot analysis of macroschizont stage antigens suggested that all four antibodies recognized the same antigen. This was a molecule which varied in molecular mass between different parasite stocks, ranging from 68000 to 95000 Da. The antigen was localized by immunoelectron microscopy to the surface of the intracellular macroschizonts.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, R. F., Brown, G. V. & Edwards, A. (1983). Characterization of an S antigen synthesized by several isolates of Plasmodium falciparum. Proceedings of the National Academy of Sciences, USA 80, 6652–6.CrossRefGoogle Scholar
Brown, C. G. D. (1979). Propagation of Theileria. In Practical Tissue Culture Applications (ed. Maramorosch, K. and Hirumi, H.), pp. 223254. New York: Academic Press.Google Scholar
Burnette, W. N. (1981). ‘Western blotting’ electrophoretic transfer of proteins from sodium dodecyl sulfate polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry 112, 195203.CrossRefGoogle ScholarPubMed
Burridge, M. J. (1971). Application of the indirect fluorescent antibody test in experimental East Coast fever (Theileria parva infection of cattle). Research in Veterinary Science 12, 338–41.CrossRefGoogle ScholarPubMed
Coppel, R. L., Cowman, A. F., Lingelbach, K. R., Brown, G. V., Saint, R. B., Kemp, D. J. & Anders, R. F. (1983). Isolate-specific S-antigen of Plasmodium falciparum contains a repeated sequence of eleven amino acids. Nature, London 306, 751–6.CrossRefGoogle ScholarPubMed
Coppel, R. L., Favaloro, J. M., Crewther, P. E., Burkot, T. R., Bianco, A. E., Stahl, H. D., Kemp, D. J., Anders, R. F. & Brown, G. V. (1985). A blood stage antigen of Plasmodium falciparum shares determinants with the sporozoite coat protein. Proceedings of the National Academy of Sciences, USA 82, 5121–5.Google Scholar
Creemers, P. (1983). Protein antigens of Theileria parva macroschizonts and immune precipitation studies. Journal of Parasitology 69, 54–9.CrossRefGoogle ScholarPubMed
Emery, D. L. (1981). Adoptive transfer of immunity to infection with Theileria parva (East Coast fever) between cattle twins. Research in Veterinary Science 30, 364–7.Google Scholar
Erickson, P. F., Minier, L. N. & Lasher, R. S. (1982). Quantitative electrophoretic transfer of polypeptides from SDS polyacrylamide gels to nitrocellulose sheets: a method for their re-use in immunoautoradiographic detection of antigens. Journal of Immunological Methods 51, 241–9.CrossRefGoogle Scholar
Eugui, E. M. & Emery, D. L. (1981). Genetically restricted cell-mediated cytotoxicity in cattle immune to Theileria parva. Nature, London 290, 251–4.Google Scholar
Goddeeris, B. M., Katende, J. M., Irvin, A. D. & Chumo, R. S. C. (1982). Indirect fluorescent antibody test for experimental epizootiological studies on East Coast Fever (Theileria parva infection in cattle). Evaluation of cell culture schizont antigen fixed and stored in suspension. Research in Veterinary Science 33, 360–5.Google Scholar
Irvin, A. D., Dobbelaere, D. A. E., Mwamachi, D. M., Minami, T., Spooner, P. R. & Ocama, J. G. R. (1983). Immunization against East Coast Fever: correlation between monoclonal antibody profiles of Theileria parva stocks and cross immunity in vivo. Research in Veterinary Science 35, 341–6.CrossRefGoogle ScholarPubMed
Maizel, J. V. Jr (1971). Polyacrylamide gel electrophoresis of viral proteins. Methods in Virology 5, 179246.CrossRefGoogle Scholar
Minami, T., Spooner, P. R., Irvin, A. D., Ocama, J. G. R., Dobbelaere, D. A. E. & Fujinaga, T. (1983). Characterisation of stocks of Theileria parva by monoclonal antibody profiles. Research in Veterinary Science 35, 334–40.Google Scholar
Nussenzweig, V. & Nussenzweig, R. S. (1985). Circumsporozoite proteins of malaria parasites. Cell 42, 401–3.Google Scholar
Pearson, T. W., Pinder, M., Roelants, G. E., Kar, S. K., Lundin, L. B., Mayor-Withey, K. S. & Hewett, R. S. (1980). Methods for derivation and detection of anti-parasite monoclonal antibodies. Journal of Immunological Methods 34, 141–54.CrossRefGoogle ScholarPubMed
Pinder, M. & Hewett, R. S. (1980). Monoclonal antibodies detect antigenic diversity in Theileria parva parasites. Journal of Immunology 124, 1000–1.Google Scholar
Radley, D. E., Brown, C. G. D., Burridge, M. J., Cunningham, M. P., Kirimi, I. M., Purnell, R. E. & Young, A. S. (1975). East Coast fever: 1. Chemoprophylactic immunization of cattle against Theileria parva (Muguga) and five theilerial strains. Veterinary Parasitology 1, 3541.Google Scholar
Shapiro, S. Z., Voigt, W. P. & Fujisaki, K. (1986). Tick antigens recognized by serum from a guinea pig resistant to infestation with the tick Rhipicephalus appendiculatus. Journal of Parasitology (in the Press).CrossRefGoogle ScholarPubMed
Stagg, D. A., Dolan, T. T., Leitch, B. L. & Young, A. S. (1981). The initial stages of infection of cattle cells with Theileria parva in vitro. Parasitology 83, 191–7.CrossRefGoogle ScholarPubMed
Tait, A. (1981). Analysis of protein variation in Plasmodium falciparum by two-dimentional (sic) gel electrophoresis. Molecular and Biochemical Parasitology 2, 205–18.CrossRefGoogle Scholar
Webster, P., Dobbelaere, D. A. E. & Fawcett, D. W. (1985). The entry of sporozoites of Theileria parva into bovine lymphocytes in vitro. Immunoelectron microscopic observations. European Journal of Cell Biology 36, 157–62.Google Scholar
Young, A. S. & Leitch, B. L. (1980). A possible relationship between the development of Theileria species and the ecdysis of their tick hosts. Journal of Parasitology 66, 356–9.CrossRefGoogle Scholar