Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-10T21:13:16.491Z Has data issue: false hasContentIssue false

Light and electron microscopical observations of the effects of high-density lipoprotein on growth of Plasmodium falciparum in vitro

Published online by Cambridge University Press:  13 May 2004

H. IMRIE
Affiliation:
Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
D. J. P. FERGUSON
Affiliation:
Department of Pathology and Bacteriology, John Radcliffe Hospital, Oxford OX39DU, UK
M. CARTER
Affiliation:
Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford OX1 3SY, UK
J. DRAIN
Affiliation:
Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham AL, 35294, USA
A. SCHIFLETT
Affiliation:
Marine Biological Laboratory, Woods Hole, MA 02543, USA
S. L. HAJDUK
Affiliation:
Marine Biological Laboratory, Woods Hole, MA 02543, USA
K. P. DAY
Affiliation:
Peter Medawar Building for Pathogen Research and Department of Zoology, University of Oxford, Oxford OX1 3SY, UK

Abstract

Human serum high-density lipoprotein (HDL) is necessary and sufficient for the short-term maintenance of Plasmodium falciparum in in vitro culture. However, at high concentrations it is toxic to the parasite. A heat-labile component is apparently responsible for the stage-specific toxicity to parasites within infected erythrocytes 12–42 h after invasion, i.e. during trophozoite maturation. The effects of HDL on parasite metabolism (as determined by nucleic acid synthesis) are evident at about 30 h after invasion. Parasites treated with HDL show gross abnormalities by light and electron microscopy.

Type
Research Article
Copyright
2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BRUCE, M. C. & DAY, K. P. ( 2002). Cross-species regulation of malaria parasitaemia in the human host. Current Opinion in Microbiology 5, 431437.CrossRefGoogle Scholar
DAY, K. P., KARAMALIS, F., THOMPSON, J., BARNES, D. A., PETERSON, C., BROWN, H., BROWN, G. V. & KEMP, D. J. ( 1993). Genes necessary for expression of a virulence determinant and for transmission of Plasmodium falciparum are located on a 0·3 Megabase region of chromosome 9. Proceedings of the National Academy of Sciences, USA 90, 82928296.CrossRefGoogle Scholar
DESJARDINS, R. E., CANFIELD, C. J., HAYNES, J. D. & CHULAY, J. D. ( 1979). Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrobial Agents and Chemotherapy 16, 710718.CrossRefGoogle Scholar
FITCH, C. D., CHEN, Y. F. & CAI, G. Z. ( 2003). Chloroquine-induced masking of a lipid that promotes ferriprotoporphyrin IX dimerization in malaria. Journal of Biological Chemistry 278, 2259622599.CrossRefGoogle Scholar
FREEMAN, R. R. & HOLDER, A. A. ( 1983). Light microscope morphology of Plasmodium falciparum during a synchronized growth cycle in vitro. Annals of Tropical Medicine and Parasitology 77, 9596.CrossRefGoogle Scholar
GRELLIER, P., RIGOMIER, D., CLAVEY, V., FRUCHART, J. C. & SCHREVEL, J. ( 1991). Lipid traffic between high density lipoproteins and Plasmodium falciparum infected red blood cells. Journal of Cell Biology 112, 267277.CrossRefGoogle Scholar
HAJDUK, S. L., MOORE, D. R., VASUDEVACHARYA, J., SIQUEIRA, H., TORRI, A. F., TYTLER, E. M. & ESKO, J. D. ( 1989). Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. Journal of Biological Chemistry 264, 52105217.Google Scholar
HALDAR, K. ( 1992). Lipid transport in Plasmodium. Infectious Agents of Disease 1, 254262.Google Scholar
HALDAR, K., DEAMORIM, A. F. & CROSS, G. A. M. ( 1989). Transport of fluorescent phospholipid analogs from the erythrocyte-membrane to the parasite in Plasmodium falciparum-infected cells. Journal of Cell Biology 108, 21832192.CrossRefGoogle Scholar
KWIATKOWSKI, D. & NOWAK, M. ( 1991). Periodic and chaotic host–parasite interactions in human malaria. Proceedings of the National Academy of Sciences, USA 88, 51115113.CrossRefGoogle Scholar
LAMBROS, C. & VANDERBURG, J. P. ( 1979). Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Parasitology 65, 113139.CrossRefGoogle Scholar
MITAMURA, T., HANADA, K., KO-MITAMURA, E. P., NISHIJIMA, M. & HORII, T. ( 2000). Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. Parasitology International 49, 219229.CrossRefGoogle Scholar
PASVOL, G., WILSON, R. J. M., SMALLEY, M. E. & BROWN, J. ( 1978). Separation of viable schizont-infected red cells of Plasmodium falciparum from human blood. Annals of Tropical Medicine and Parasitology 72, 8788.CrossRefGoogle Scholar
PIPER, K. P., ROBERTS, D. J. & DAY, K. P. ( 1999). Plasmodium falciparum: analysis of the antibody specificity to the surface of the trophozoite-infected erythrocyte. Experimental Parasitology 91, 161169.CrossRefGoogle Scholar
TAHIR, A. E., MALHOTRA, P. & CHAUHAN, V. S. ( 2003). Uptake of proteins and degradation of human serum albumin by Plasmodium falciparum-infected human erythrocytes. Malaria Journal 2, 11.CrossRefGoogle Scholar
TRAGER, W. & JENSON, J. B. ( 1976). Human malaria parasites in continuous culture. Science 193, 674675.CrossRefGoogle Scholar
TROTTEIN, F. & COWMAN, A. F. ( 1995). The primary structure of a putative phosphatidylethanolamine-binding protein from Plasmodium falciparum. Molecular and Biochemical Parasitology 70, 235239.CrossRefGoogle Scholar
VIAL, H. J., ELDIN, P., TIELENS, A. G. & VAN HELLEMOND, J. J. ( 2003). Phospholipids in parasitic protozoa. Molecular and Biochemical Parasitology 126, 143154.CrossRefGoogle Scholar