Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T18:01:24.087Z Has data issue: false hasContentIssue false

Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus

Published online by Cambridge University Press:  09 October 2003

A. LAVIKAINEN
Affiliation:
Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, P.O. Box 21, FIN-00014 University of Helsinki, Finland
M. J. LEHTINEN
Affiliation:
Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, P.O. Box 21, FIN-00014 University of Helsinki, Finland
T. MERI
Affiliation:
Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, P.O. Box 21, FIN-00014 University of Helsinki, Finland
V. HIRVELÄ-KOSKI
Affiliation:
National Veterinary and Food Research Institute (EELA), Oulu Regional Unit, P.O. Box 517, FIN-90101 Oulu, Finland
S. MERI
Affiliation:
Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital, P.O. Box 21, FIN-00014 University of Helsinki, Finland

Abstract

The northern biotype of Echinococcus granulosus occurs in North America and northern Eurasia in life-cycles involving cervids. Previously, cervid isolates of E. granulosus from North America have been characterized using molecular genetic techniques as the G8 genotype. In this study, 5 isolates of E. granulosus were collected from 4 reindeer and 1 moose in north-eastern Finland. DNA sequences within regions of mitochondrial cytochrome c oxidase I (COI) and NADH dehydrogenase I (NDI) genes and the internal transcribed spacer 1 (ITS-1) fragment of the ribosomal DNA were analysed. The mitochondrial nucleotide sequences were identical in all isolates, but high sequence variation was found in the ITS-1 region. Mitochondrial and nuclear sequences of the Finnish cervid E. granulosus and the camel strain (G6) of E. granulosus resembled closely each other. According to phylogenetic analyses, the Finnish isolates have close relationships also with the pig (G7) and cattle (G5) strains. Although some similarities were found with the previously published North American cervid strain (G8), particularly in the NDI sequence and some of the ITS-1 clones, the Finnish E. granulosus form represents a distinct, previously undescribed genotype of E. granulosus. The novel genotype is hereby named as the Fennoscandian cervid strain (G10).

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

BARRETT, R. & DAU, J. (1981). Echinococcus. In Alaskan Wildlife Diseases (ed. Dieterich, R. A.), pp. 111118. University of Alaska, Fairbanks, Alaska, USA.
BOWLES, J., BLAIR, D. & McMANUS, D. P. (1992). Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Molecular and Biochemical Parasitology 54, 165174.CrossRefGoogle Scholar
BOWLES, J., BLAIR, D. & McMANUS, D. P. (1994). Molecular genetic characterization of the cervid strain (‘northern form’) of Echinococcus granulosus. Parasitology 109, 215221.CrossRefGoogle Scholar
BOWLES, J., BLAIR, D. & McMANUS, D. P. (1995). A molecular phylogeny of the genus Echinococcus. Parasitology 110, 317328.CrossRefGoogle Scholar
BOWLES, J. & McMANUS, D. P. (1993 a). NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. International Journal for Parasitology 23, 969972.Google Scholar
BOWLES, J. & McMANUS, D. P. (1993 b). Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RFLP method. Molecular and Biochemical Parasitology 57, 231239.Google Scholar
CASTRODALE, L. J., BELLER, M., WILSON, J. F., SCHANTZ, P. M., McMANUS, D. P., ZHANG, L.-H., FALLICO, F. G. & SACCO, F. D. (2002). Two atypical cases of cystic echinococcosis (Echinococcus granulosus) in Alaska, 1999. American Journal of Tropical Medicine and Hygiene 66, 325327.CrossRefGoogle Scholar
CEDERBERG, O.-E. (1946). Beiträge zur Kenntnis über das Vorkommen von Echinokokkus-Fällen in Finnland. Acta Chirurgica Scandinavica 93, 111130.Google Scholar
HASEGAWA, M., KISHINO, H. & YANO, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22, 160174.CrossRefGoogle Scholar
VAN HERWERDEN, L., GASSER, R. B. & BLAIR, D. (2000). ITS-1 ribosomal DNA sequence variants are maintained in different species and strains of Echinococcus. International Journal for Parasitology 30, 157169.CrossRefGoogle Scholar
HIRVELÄ-KOSKI, V., HAUKISALMI, V., KILPELÄ, S.-S., NYLUND, M. & KOSKI, P. (2003). Echinococcus granulosus in Finland. Veterinary Parasitology 111, 175192.CrossRefGoogle Scholar
KEDRA, A. H., SWIDERSKI, Z., TKACH, V. V., DUBINSKY, P., PAWLOWSKI, Z., STEFANIAK, J. & PAWLOWSKI, J. (1999). Genetic analysis of Echinococcus granulosus from humans and pigs in Poland, Slovakia and Ukraine. A multicenter study. Acta Parasitologica 44, 248254.Google Scholar
KUMAR, S., TAMURA, K., JAKOBSEN, I. B. & NEI, M. (2001). MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 12441245.CrossRefGoogle Scholar
MAIJALA, R., HAUKISALMI, V., HENTTONEN, H., HIRVELÄ-KOSKI, V., KAUHALA, K., KILPELÄ, S.-S., LAVIKAINEN, A., OKSANEN, A., TENHU, H. & VAHTERISTO, L. (2002). Risk Assessment on Echinococcus granulosus in Finland. National Veterinary and Food Research Institute of Finland (EELA), Helsinki, Finland.
McMANUS, D. P., ZHANG, L., CASTRODALE, L. J., LE, T. H., PEARSON, M. & BLAIR, D. (2002). Short report: molecular genetic characterization of an unusually severe case of hydatid disease in Alaska caused by the cervid strain of Echinococcus granulosus. American Journal of Tropical Medicine and Hygiene 67, 296298.CrossRefGoogle Scholar
MELTZER, H., KOVACS, L., ORFORD, T. & MATAS, M. (1956). Echinococcosis in North American indians and eskimos. The Canadian Medical Association Journal 75, 121128.Google Scholar
MILLER, M. J. (1953). Hydatid infection in Canada. The Canadian Medical Association Journal 68, 423434.Google Scholar
MOORE, R. D., URSCHEL, J. D., FRASER, R. E., NAKAI, S. S. & GEERAERT, J. A. (1994). Cystic hydatid lung disease in Northwest Canada. Canadian Journal of Surgery 37, 2022.Google Scholar
NICHOLAS, K. B., NICHOLAS, H. B. Jr. & DEERFIELD, D. W. II (1997). GeneDoc: Analysis and Visualization of Genetic Variation. Embnew.News 4, 14.Google Scholar
PAGE, R. D. M. (1996). TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12, 357358.Google Scholar
PINCH, L. W. & WILSON, J. F. (1973). Non-surgical management of cystic hydatid disease in Alaska: A review of 30 cases of Echinococcus granulosus infection treated without operation. Annals of Surgery 178, 4548.CrossRefGoogle Scholar
RAUSCH, R. L. (1995). Life cycle patterns and geographic distribution of Echinococcus species. In Echinococcus and Hydatid Disease (ed. Thompson, R. C. A. & Lymbery, A. J.), pp. 89134. CAB International, Wallingford, UK.
REIN, K. (1957). Echinokokksykdommen i Nord-Norge. Nordisk Medicin 28, 18531857.Google Scholar
RONÉUS, O. (1974). Prevalence of Echinococcosis in reindeer (Rangifer tarandus) in Sweden. Acta Veterinaria Scandinavica 15, 170178.Google Scholar
SAMBROOK, J. & RUSSELL, D. W. (2001). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
SCHMIDT, H. A., STRIMMER, K., VINGRON, M. & VON HAESELER, A. (2002). TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18, 502504.CrossRefGoogle Scholar
AF SCHULTÉN (1890). Protokoll fördt vid Finska Läkaresällskapets sammanträden den 29 mars och den 12 april 1890. Finska Läkaresällskapets Handlingar 32, 358.
SWEATMAN, G. K. & WILLIAMS, R. J. (1963). Comparative studies on the biology and morphology of Echinococcus granulosus from domestic livestock, moose and reindeer. Parasitology 53, 339390.CrossRefGoogle Scholar
SÖDERHJELM, L. (1945). Förekomsten av Echinococcus hydatidosus hos människa och ren (Rangifer tarandus). Svenska Läkartidningen 42, 19101916.Google Scholar
SÖDERHJELM, L. (1946). Echinococcus hydatidosus hos ren (Rangifer tarandus). Skandinavisk Veterinärtidskrift 36, 378381.Google Scholar
THOMPSON, J. D., HIGGINS, D. G. & GIBSON, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle Scholar
THOMPSON, R. C. A. & McMANUS, D. P. (2001). Aetiology: parasites and life-cycles. In WHO/OIE Manual on Echinococcosis in Humans and Animals: a Public Health Problem of Global Concern (ed. Eckert, J., Gemmell, F.-X. & Pawlowski, Z. S.), pp. 119. World Organization for Animal Health (OIE) and World Health Organization, Paris, France.
WEBSTER, G. A. & CAMERON, T. W. M. (1961). Observations on experimental infections with Echinococcus in rodents. Canadian Journal of Zoology 39, 877891.CrossRefGoogle Scholar
WILSON, J. F., DIDDAMS, A. C. & RAUSCH, R. L. (1968). Cystic hydatid disease in Alaska. A review of 101 autochthonous cases of Echinococcus granulosus infection. The American Review of Respiratory Diseases 98, 115.Google Scholar