Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T10:49:32.659Z Has data issue: false hasContentIssue false

Mucus pH of the tiger puffer Takifugu rubripes is an important factor for host identification by the monogenean Heterobothrium okamotoi

Published online by Cambridge University Press:  09 October 2003

N. HIRAZAWA
Affiliation:
Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd, 508-8 Ariakeura, Tsurumi-cho, Minamiamabegun, Oita 876- 1204, Japan
S. OSHIMA
Affiliation:
Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd, 508-8 Ariakeura, Tsurumi-cho, Minamiamabegun, Oita 876- 1204, Japan Present address: Fish Disease Laboratory, Department of Aquaculture, Kochi University, 200 Monobe, Nankoku, Kochi 783-8502, Japan.
T. MITSUBOSHI
Affiliation:
Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd, 508-8 Ariakeura, Tsurumi-cho, Minamiamabegun, Oita 876- 1204, Japan
S. YAMASHITA
Affiliation:
Central Research Laboratory, Nippon Suisan Kaisha, Ltd, 559-6 Kitanomachi, Hachioji, Tokyo 192-0906, Japan

Abstract

We examined a host-finding factor of the monogenean Heterobothrium okamotoi oncomiracidia to develop an alternative prophylaxis. H. okamotoi oncomiracidia attached preferentially to gill filaments and skin mucus from the tiger puffer Takifugu rubripes compared with corresponding material from other tested fishes (amber jack Seriola dumerili, red sea bream Pagrus major, Japanese flounder Paralichthys olivaceus and spotted halibut Verasper variegatus). The body mucus pH of the tiger puffer was 6·40±0·09 (mean±S.D.), whereas that for the other tested fishes was 7·2–7·4. To find if this difference in pH could account for the specific targeting of tiger puffer by H. okamotoi oncomiracidia, the attachment response of the oncomiracidia to pieces of agar buffered at various pH between 6·0 and 7·4 was examined. The number of attaching oncomiracidia was maximal at pH 6·4. We produced gynogenetic tiger puffers from a single female. These gynogenetic individuals showed a variety of body mucus pH and they were exposed to the oncomiracidia. Thirteen days after exposure, more young H. okamotoi were found on the gills of gynogenetic tiger puffer with mucus at pH 6·3–6·6, than on gills of fish with mucus at pH 6·0–6·3 and 6·6–7·2. H. okamotoi exploits the body mucus pH to identify the host. The simplicity of pH as a lure may lead to development of a simple and economical method to control H. okamotoi outbreaks.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

CHIGASAKI, M., NAKANE, M., OGAWA, K. & WAKABAYASHI, H. (2000). Standardized method for experimental infection of tiger puffer Takifugu rubripes with oncomiracidia of Heterobothrium okamotoi (Monogenea: Diclidophoridae) with some data on the oncomiracidial biology. Fish Pathology 35, 215221.CrossRefGoogle Scholar
HAAS, W., GRANZER, M. & BROCKELMAN, C. R. (1990). Opisthorchis viverrini: finding and recognition of the fish host by the cercariae. Experimental Parasitology 71, 422431.CrossRefGoogle Scholar
HARADA, Y. & ABE, T. (1994). Taxonomy and Toxicity of Imported Pufferfishes in Japan, 1st Edn. Kouseisha kouseikaku, Tokyo. (In Japanese.)
HIRAZAWA, N., GOTO, T. & SHIRASU, K. (2003). Killing effect of various treatments on the monogenean Heterobothrium okamotoi eggs and oncomiracidia and the ciliate Cryptocaryon irritans cysts and theronts. Aquaculture 223, 113.CrossRefGoogle Scholar
HIRAZAWA, N., OHTAKA, T. & HATA, K. (2000). Challenge trials on the anthelmintic effect of drugs and natural agents against the monogenean Heterobothrium okamotoi in the tiger puffer Takifugu rubripes. Aquaculture 188, 113.CrossRefGoogle Scholar
HIRAZAWA, N., OSHIMA, S., MITSUBOSHI, T. & HATA, K. (2001). The anthelmintic effect of medium-chain fatty acids against the monogenean Heterobothrium okamotoi in the tiger puffer Takifugu rubripes: evaluation of doses of caprylic acid at different water temperatures. Aquaculture 195, 211223.CrossRefGoogle Scholar
HOSHINA, T. (1962). On a new bacterium, Paracolobactrum anguillimortiferum n. sp. Bulletin of the Japanese Society of Scientific Fisheries 28, 162164.CrossRefGoogle Scholar
INADA, Y., CHIKUSHI, Y., TSUJIMURA, A. & TANIGUCHI, N. (1997). Selection response of resistance to vibriosis in gynogenetic ayu Plecoglossus altivelis. Nippon Suisan Gakkaishi 63, 722727. (In Japanese with English abstract.)CrossRefGoogle Scholar
ISHIHARA, S. & KUSUDA, R. (1982). Growth and survival of Edwardsiella tarda bacteria in environmental water. Bulletin of the Japanese Society of Scientific Fisheries 47, 9991002.Google Scholar
KEARN, G. C. (1967). Experiments on host-finding and host specificity in the monogenean skin parasite Entobdella soleae. Parasitology 57, 585605.CrossRefGoogle Scholar
KEARN, G. C. (1974). The effect of fish skin mucus on hatching in the monogenean parasite Entobdella soleae from the skin of the common sole, Solea solea. Parasitology 68, 173188.Google Scholar
KEARN, G. C. (1980). Light and gravity responses of the oncomiracidium of Entobdella soleae and their role in host location. Parasitology 81, 7191.CrossRefGoogle Scholar
KOIZUMI, K., LEVINE, D. G. & BROOKS, C. M. (1967). Effect of tetrodotoxin (puffer fish toxin) on the central nervous system. Neurology 17, 395404.CrossRefGoogle Scholar
KTARI, M. H. (1969). Recherches sur l'anatomie et la biologie de Microcotyle salpae Parona et Perugia. 1890 parasite de Box salpa L. (Téléostéen). Annales de Parasitologie Humaine et Comparée 44, 425440.Google Scholar
KUSUDA, R. & KAWAI, K. (1998). Bacterial diseases of cultured fish in Japan. Fish Pathology 33, 221227.CrossRefGoogle Scholar
KUSUDA, R., KAWAI, K., TOYOSHIMA, T. & KOMATSU, I. (1976). A new pathogenic bacterium belonging to the genus Streptococcus isolated from an epizootic of cultured yellowtail. Nippon Suisan Gakkaishi 42, 13451352.CrossRefGoogle Scholar
LEVIT, M. N. & STOCK, J. B. (1999). pH sensing in bacterial chemotaxis. Novartis Foundation Symposium 221, 3854.Google Scholar
MIYASHITA, S. & KUMAI, H. (2000). Amber Jack Seriola dumerili. In Aquaculture of Marine Fishes (ed. Kumai, H.), pp. 7887. Sobunsha, Tokyo. (In Japanese.)
OGAWA, K. (1991). Redescription of Heterobothrium tetrodonis (Goto, 1894) (Monogenea: Diclidophoridae) and other related new species from puffers of the genus Takifugu (Teleost: Tetraodontidae). Japan Journal of Parasitology 40, 388396.Google Scholar
OGAWA, K. & INOUYE, K. (1997). Heterobothrium infection of cultured tiger puffer Takifugu rubripes – infection experiments. Fish Pathology 32, 2127.CrossRefGoogle Scholar
OGAWA, K. & YOKOYAMA, H. (1998). Parasitic diseases of cultured marine fish in Japan. Fish Pathology 33, 303309.CrossRefGoogle Scholar
OKAMOTO, R. (1963). On the problems of a monogenetic trematode infection of puffers from the Inland Sea of Japan. Suisanzoshoku (Special Issue) 3, 1729. (In Japanese.)Google Scholar
PALING, J. E. (1969). The manner of infection of trout gills by the monogenean parasite Discocotyle sagittata. Journal of Zoology 159, 293309.CrossRefGoogle Scholar
PURDOM, C. E. (1993). Chromosome engineering. In Genetics and Fish Breeding, pp. 204222. Chapman and Hall, London.
SIMIZU, U. & EGUSA, S. (1972). A reexamination of the fish-pathogenic bacterium that had been reported as a Pasteurella species. Bulletin of the Japanese Society of Scientific Fisheries 38, 803812.Google Scholar
TAVE, D. (1993). Genetics of quantitative phenotypes (chapter 4) and Biotechnology (chapter 5). In Genetics for Fish Hatchery Managers, pp. 117304. Van Nostrand Reinhold, New York.
WHITTINGTON, I. D. & KEARN, G. C. (1986). Rhythmical hatching and oncomiracidial behaviour in the hexabothriid monogenean Rajonchocotyle emarginata from the gills of Raja spp. Journal of the Marine Biological Association 66, 93111.CrossRefGoogle Scholar
WHITTINGTON, I. D. & KEARN, G. C. (1989). Rapid hatching induced by light intensity reduction in the polypisthocotylean monogenean Plectanocotyle gurnardi from the gills of gurnards (Triglidae) with observations on the anatomy and behaviour of the oncomiracidium. Journal of the Marine Biological Association 69, 609624.CrossRefGoogle Scholar
YOSHINAGA, T., NAGAKURA, T., OGAWA, K. & WAKABAYASHI, H. (2000). Attachment-inducing capacities of fish tissue extracts on oncomiracidia of Neobenedenia girellae (Monogenea, Capsalidae). Journal of Parasitology 86, 214219.CrossRefGoogle Scholar