Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-01T23:45:14.517Z Has data issue: false hasContentIssue false

Myxozoans as biological tags for stock identification of the Argentine hake, Merluccius hubbsi (Gadiformes: Merlucciidae)

Published online by Cambridge University Press:  29 February 2016

D. M. P. CANTATORE*
Affiliation:
Laboratorio de Parasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600) Mar del Plata, Argentina
M. M. IRIGOITIA
Affiliation:
Laboratorio de Parasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600) Mar del Plata, Argentina
A. S. HOLZER
Affiliation:
Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, (37005) Cěské Budějovice, Czech Republic
J. T. TIMI
Affiliation:
Laboratorio de Parasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600) Mar del Plata, Argentina
*
*Corresponding author: Laboratorio de Parasitología, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata-CONICET, Funes 3350, (7600) Mar del Plata, Argentina. Tel.: +54 223 475 −2426 (236. Fax: +54 223 475-3150. E-mail: cantator@mdp.edu.ar

Summary

Myxozoans have been successfully used as tags for fish stock identification around the world. However, few studies using myxozoan tags have been carried out in the Southern Atlantic, a region with complex oceanography that constitutes a potentially suitable scenario for testing the utility of myxozoans as indicators. Its usefulness was tested using six samples of Merluccius hubbsi in two different regions of the Argentine Sea. Generalized linear models were performed to assess the effects of fish size and sex, and year and region of capture and selected using the Information Theoretic approach. Three myxozoan species were recorded: Kudoa rosenbuschi, Myxoproteus meridionalis and Fabespora sp. Results of modelling species individually showed differential capabilities for detecting geographical population structure at different spatial scales, with K. rosenbuschi and Fabespora sp. allowing the discrimination of northern and southern stocks, but Fabespora sp. also as a promissory indicator of intrapopulation sub-structure due to different migratory routes during non-reproductive periods. This work confirms that myxozoans offer a set of suitable markers at different spatial scales, which can be selected individually or in any combination, depending on the geographical extent of the study, constituting tools adaptable to the objectives of further research on fish population structure.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abollo, E., Novoa, B. and Figueras, A. (2005). SSU rDNA analysis of Kudoa rosenbuschi (Myxosporea) from the Argentinean hake Merluccius hubbsi . Diseases of Aquatic Organisms 64, 135139.CrossRefGoogle ScholarPubMed
Agnew, D. J., Marlow, T. R., Lorenzen, K., Pompert, J., Wakeford, R. C. and Tingley, G. A. (2003). Influence of Drake Passage oceanography on the parasitic infection of individual year-classes of southern blue whiting Micromesistius australis . Marine Ecology Progress Series 254, 281291.CrossRefGoogle Scholar
Anderson, D. R., Burnham, K. P. and Thompson, W. L. (2000). Null hypothesis testing: problems, prevalence, and an alternative. The Journal of Wildlife Management 64, 9102000.Google Scholar
Bartón, K. (2009). MuMIn: multi-model inference. http://r-forge.r-project.org/projects Google Scholar
Bezzi, S. I., Verazay, G. A. and Dato, C. V. (1995). Biology and fisheries of argentine hakes (Merluccius hubbsi and Merluccius australis). In Hake: Biology, Fisheries and Markets (ed. Alheit, Y. J. and Pitcher, T. J.), pp. 241267. Chapman and Hall, London, UK.Google Scholar
Bezzi, S. I., Renzi, M., Irusta, G., Santos, B., Tringali, L. S., Ehrlich, M. D. and Veis, S. I. (2004). Caracterización biológica y pesquera de la merluza (Merluccius hubbsi). In El Mar Argentino y sus recursos pesqueros. Tomo 4: Los peces marinos de interés pesquero. Caracterización biológica y evaluación del estado de explotación (ed. Sánchez, R. and Bezzi, S. I.), pp. 157205. INIDEP, Mar del Plata, Argentina.Google Scholar
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H. and White, J.-S. S. (2009). Generalized linear mixed models: a practical quide for ecology and evolution. Trends in Ecology & Evolution 24, 127135.CrossRefGoogle Scholar
Burnham, K. P. and Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York, USA.Google Scholar
Bush, A. O., Lafferty, K. D., Lotz, J. M. and Shostak, A. W. (1997). Parasitology meets ecology on its own terms: margolis et al. revisited. The Journal of Parasitology 83, 575–83.CrossRefGoogle Scholar
Cadrin, S. X., Friedland, K. D. and Waldman, J. R. (2005). Stock identification methods: an overview. In Stock Identification Methods: Applications in Fishery Science, 2nd Edn. (ed. Cadrin, S. X., Friedland, K. D. and Waldman, J. R.), pp. 36. Elsevier Academic Press, San Diego, USA.Google Scholar
Campbell, N. (2005). The myxosporean parasitofauna of the Atlantic horse mackerel, Trachurus trachurus (L.) in the North-East Atlantic Ocean and Mediterranean Sea. Acta Parasitologica 50, 97101.Google Scholar
Cantatore, D. M. P. and Timi, J. T. (2015). Marine parasites as biological tags in South American Atlantic waters, current status and perspectives. Parasitology 142, S5S24.CrossRefGoogle Scholar
Catalano, S. R., Whittington, I. D., Donnellan, S. C. and Gillanders, B. M. (2014). Parasites as biological tags to assess host population structure: guidelines, recent genetic advances and comments on a holistic approach. International Journal for Parasitology: Parasite and Wildlife 3, 220226.Google ScholarPubMed
Cousseau, M. B. and Perrotta, R. G. (2004). Peces marinos de Argentina: biología, distribución, pesca. INIDEP, Mar del Plata, Argentina.Google Scholar
Ehrlich, M. D. (1998). Áreas de desove y cría de merluza Merluccius hubbsi en el Golfo San Matías. Evidencias de un stock independiente al de plataforma. Informe Técnico INIDEP 84, 18.Google Scholar
Evdokimova, E. B. (1977). Miksosporidii kostistyh ryb Patagonskogo selfa (Atlanticeskoe pobereze Argentiny). Parazitologiya 11, 166178. (In Russian).Google Scholar
Gelman, A., Su, Y-S., Yajima, M., Hill, J., Pittau, M. G., Kerman, J., Zheng, T. and Dorie, V. (2015). arm: data analysis using regression and multilevel ⁄hierarchical models http://CRAN.R-project.org/package=arm Google Scholar
George-Nascimento, M., Moscoso, D., Niklitschek, E. and González, K. (2011). Geographical variation of parasite communities in the southern blue whiting Micromesistius australis around southern South America. Revista de Biología Marina y Oceanográfica 46, 5358.CrossRefGoogle Scholar
Grueber, C. E., Nakagawa, S., Laws, R. J. and Jamieson, I. G. (2011). Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24, 699711.CrossRefGoogle ScholarPubMed
Johnson, J. B. and Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology and Evolution 19, 101108.CrossRefGoogle ScholarPubMed
Kalavati, C., Longshaw, M. and MacKenzie, K. (1996). Two species of myxozoan parasites (Myxosporea: Bivalvulida), including a new genus, from Patagonotothen sima (Richardson, 1845) (Pisces: Teleostei) in the southwest Atlantic. Systematic Parasitology 34, 6770.CrossRefGoogle Scholar
Khan, R. A. and Tuck, C. (1995). Parasites as biological indicators of stocks of Atlantic cod (Gadus morhua) off Newfoundland, Canada. Canadian Journal of Fisheries Aquatics Sciences 52, 195201.CrossRefGoogle Scholar
Larsen, G., Hemmingsen, W., MacKenzie, K. and Lysne, D. A. (1997). A population study of cod, Gadus morhua L., in northern Norway using otolith structure and parasite tags. Fisheries Research 32, 1320.CrossRefGoogle Scholar
Landwehr, J. M., Pregibon, D. and Shoemaker, A. C. (1984). Graphical methods for assessing logistic regression models. Journal of the American Statistical Association 79, 6171.CrossRefGoogle Scholar
Lom, J. and Arthur, J. R. (1989). A guideline for the preparation of species descriptions in Myxosporea. Journal of Fish Diseases 12, 151156.CrossRefGoogle Scholar
Lom, J. and Dyková, I. (1992). Protozoan Parasites of Fishes. Developments in Aquaculture and Fisheries Science, 1st Edn. Elsevier, Amsterdam, Netherlands.Google Scholar
Macchi, G. J., Pájaro, M. and Dato, C. (2007). Spatial variations of the Argentine hake (Merluccius hubbsi) spawning shoals in the Patagonian area during a reproductive season. Revista de Biología Marina y Oceanografía 42, 345356.CrossRefGoogle Scholar
Macchi, G. J., Pájaro, M. and Ehrlich, M. D. (2004). Seasonal egg production pattern of the Patagonian stock of Argentine hake (Merluccius hubbsi). Fisheries Research 67, 2538.CrossRefGoogle Scholar
Machado-Schiaffino, G., Juanes, F. and Garcia-Vazquez, E. (2011). Identifying unique populations in long-dispersal marine species: gulfs as priority conservation areas. Biological Conservation 144, 330338.CrossRefGoogle Scholar
MacKenzie, K. and Longshaw, M. (1995). Parasites of the hakes Merluccius australis and M. hubbsi in the waters around the Falkland Islands, southern Chile, and Argentina, with an assessment of their potential value as biological tags. Canadian Journal of Fisheries Aquatic Science 52, 213224.CrossRefGoogle Scholar
MacKenzie, K. and Abaunza, P. (2005). Parasites as biological tags. In Stock Identification Methods: Applications in Fisheries Science (ed. Cadrin, S. X., Friedland, K. D. and Waldman, J. R.), pp. 211226. Elsevier Academic Press, San Diego, USA.CrossRefGoogle Scholar
MacKenzie, K. and Abaunza, P. (2013). Parasites as biological tags. In Stock Identification Methods: Applications in Fisheries Science, 2nd Edn (ed. Cadrin, S. X., Friedland, K. D. and Waldman, J. R.), pp. 185204. Elsevier Academic Press, San Diego, USA.Google Scholar
MacKenzie, K., Kalavati, C., Gaard, M. and Hemmingsen, W. (2005). Myxosporean gall bladder parasites of gadid fishes in the North Atlantic: their geographical distributions and an assessment of their economic importance in fisheries and mariculture. Fisheries Research 76, 454465.CrossRefGoogle Scholar
MacKenzie, K., Brickle, P., Hemmingsen, W. and George-Nascimento, M. (2013). Parasites of hoki, Macruronus magellanicus, in the Southwest Atlantic and Southeast Pacific Oceans, with an assessment of their potential value as biological tags. Fisheries Research 145, 15.CrossRefGoogle Scholar
Marcogliese, D. J. and Jacobson, K. C. (2015). Parasites as biological tags of marine, freshwater and anadromous fishes in North America from the tropics to the Arctic. Parasitology 142, 6889.CrossRefGoogle ScholarPubMed
Mazerolle, M. J. (2006). Improving data analysis in herpetology: using Akaike's information criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169180.CrossRefGoogle Scholar
Mazerolle, M. J. (2015). AICcmodavg: Model selection and multimodel inference Based on (Q)AIC(c) http://r-forge.r-project.org/package=AICcmodavg Google Scholar
McCullagh, P. and Nelder, J. (1989). Generalized Linear Models, 2nd Edn. Chapman and Hall, London, UK.CrossRefGoogle Scholar
Moles, A. and Short, J. (1989). Parasites and chemical markers show promise for stock separation. NWAFSC Quart Report, NWFS, U.S. Department of Commerce 59, 111.Google Scholar
Pájaro, M., Macchi, G. J. and Ehrlich, M. D. (2005). Reproductive pattern of the patagonian stock of argentine hake (Merluccius hubbsi). Fisheries Research 72, 97108.CrossRefGoogle Scholar
Reiczigel, J. (2003). Confidence intervals for the binomial parameter: some new considerations. Statistics in Medicine 22, 611621.CrossRefGoogle ScholarPubMed
Reiczigel, J. and Rózsa, L. (2005). Quantitative Parasitology 3·0. Budapest. Distributed by the authors.Google Scholar
Reimchen, T. E. and Nosil, P. (2001). Ecological causes of sex-biased parasitism in threespine stickleback. Biological Journal of the Linnean Society 73, 5163.Google Scholar
Renzi, M. (1993). Estructura por edad y sexo de la población de merluza. Informe Técnico INIDEP 51, 5776.Google Scholar
Sardella, N. H. and Roldán, M. I. (1989). Mixosporidiosis producida por Kudoa rosenbuschi, parásito muscular de merluza común (Merluccius hubbsi) en la zona común de pesca argentino-uruguaya. Frente Marítimo 5, 8385.Google Scholar
Sardella, N. H. and Timi, J. T. (1996). Parasite communities of Merluccius hubbsi from the Argentinian-Uruguayan Common Fishing Zone. Fisheries Research 27, 8188.CrossRefGoogle Scholar
Sardella, N. H. and Timi, J. T. (2004). Parasites of argentine hake in the Argentine sea: population and infracommunity structure as evidence for host stock discrimination. Journal of Fish Biology 65, 14721488.CrossRefGoogle Scholar
Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution 1, 103113.CrossRefGoogle Scholar
Symonds, M. R. E. and Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike's information criterion. Behavioral Ecology and Sociobiology 65, 1321.CrossRefGoogle Scholar
Timi, J. T. (2007). Parasites as biological tags for stock discrimination in marine fish from South American Atlantic waters. Journal of Helminthology 81, 107111.CrossRefGoogle ScholarPubMed
Timi, J. T. and MacKenzie, K. (2015). Parasites in fisheries and mariculture. Parasitology 142, S1S4.CrossRefGoogle ScholarPubMed
Urawa, S. and Nagasawa, K. (1995). Prevalence of Myxobolus arcticus (Myxozoa: Myxosporea) in five species of Pacific salmon in the North Pacific Ocean and Bering Sea. SCI Rep Hokkaido Salmon Hatchery 49, 1119.Google Scholar
Whipps, C. M. and Diggles, B. K. (2006). Kudoa alliaria in flesh of Argentinian hoki Macruronus magellanicus (Gadiformes; Merlucciidae). Diseases of Aquatic Organisms 69, 259263.CrossRefGoogle ScholarPubMed
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. and Smith, G. M. (2009). Mixed Effects Models and Extensions in Ecology with R. Springer-Verlag, New York, USA.CrossRefGoogle Scholar