Hostname: page-component-5c6d5d7d68-wpx84 Total loading time: 0 Render date: 2024-08-15T08:32:28.075Z Has data issue: false hasContentIssue false

The Mitonuclear Compatibility Species Concept, Intrinsic Essentialism, and Natural Kinds

Published online by Cambridge University Press:  13 May 2024

Kyle B. Heine
Affiliation:
Department of Biological Sciences, Auburn University, Auburn, AL, USA
Elay Shech*
Affiliation:
Department of Philosophy, Auburn University, Auburn, AL, USA
*
Corresponding author: Elay Shech; Email: eshech@auburn.edu

Abstract

This essay introduces, develops, and appraises the mitonuclear compatibility species concept (MCSC), identifying advantages and limitations with respect to alternative species concepts. While the consensus amongst most philosophers of biology is that (kind) essentialism about species is mistaken, and that species at most have relational essences, we appeal to the MCSC to defend thoroughgoing intrinsic essentialism. Namely, the doctrine that species have fully intrinsic essences and, thus, are natural kinds (of sorts), while allowing that species aren’t categorically distinct.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, C. J. 2019. Essence in the Age of Evolution: A New Theory of Natural Kinds. New York: Routledge. https://www.routledge.com/Essence-in-the-Age-of-Evolution-A-New-Theory-of-Natural-Kinds/Austin/p/book/9781032094755 Google Scholar
Barker, M. J. 2010. “Species Intrinsicalism.” Philosophy of Science 77:7391. https://doi.org/10.1086/650209 CrossRefGoogle Scholar
Bird, A., and Tobin, E.. 2023. Natural Kinds. The Stanford Encyclopedia of Philosophy (Spring 2023 Edition), edited by Edward N. Zalta and Uri Nodelman. https://plato.stanford.edu/archives/spr2023/entries/natural-kinds/.Google Scholar
Boyd, R. 1999. “Homeostasis, Species, and Higher Taxa.” In Species: New Interdisciplinary Essays, edited by Wilson, R., 141–85. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Burton, R. S., and Barreto, F. S.. 2012. “A Disproportionate Role for mtDNA in Dobzhansky-Muller Incompatibilities?Molecular Ecology 21:4942–57. https://doi.org/10.1111/mec.12006 CrossRefGoogle ScholarPubMed
Chou, J. Y., and Leu, J. Y.. 2010. “Speciation through Cytonuclear Incompatibility: Insights from Yeast and Implication for Higher Eukaryotes.” BioEssays 32:401–11. https://doi.org/10.1002/bies.200900162 CrossRefGoogle ScholarPubMed
Coyne, J. A., and Orr, H. A. 2009. “Speciation: A Catalogue and Critique of Species Concepts.” Philosophy of Biology: An Anthology: 272–92.Google Scholar
De Queiroz, K., and Donoghue, M. J. 1988. “Phylogenetic Systematics and the Species Problem.” Cladistics 4 (4): 317–38. https://doi.org/10.1111/j.1096-0031.1988.tb00518.x CrossRefGoogle ScholarPubMed
Devitt, M. 2008. “Resurrecting Biological Essentialism.” Philosophy of Science 75: 344–82. https://doi.org/10.1086/593566 CrossRefGoogle Scholar
Devitt, M. 2021. “Defending Intrinsic Biological Essentialism.” Philosophy of Science 88: 6782. https://doi.org/10.1086/710029 CrossRefGoogle Scholar
Devitt, M. 2023. Biological Essentialism. Oxford: Oxford University Press.CrossRefGoogle Scholar
Dupré, J. 1999. “On the Impossibility of a Monistic Account of Species.” In Species: New Interdisciplinary Essays, edited by Robert, A. Wilson, 322. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Eldredge, N., and Cracraft, J. 1980. “Phylogenetic Patterns and the Evolutionary Process.” Method and Theory in Comparative Biology 8:1349.Google Scholar
Ellison, C. K, and Burton, R. S. 2006. “Disruption of Mitochondrial Function in Interpopulation Hybrids of Tigriopus californicus .” Evolution 60 (7):1382–91. https://doi.org/10.1111/j.0014-3820.2006.tb01217.xGoogle ScholarPubMed
Ereshefsky, M. 2001. The Poverty of the Linnaean Hierarchy: A Philosophical Study of Biological Taxonomy. Cambridge: Cambridge University Press.Google Scholar
Ereshefsky, M. 2022. Species. The Stanford Encyclopedia of Philosophy (Summer 2022 Edition), edited by Edward N. Zalta, https://plato.stanford.edu/archives/sum2022/entries/species/.Google Scholar
Gershoni, M., Templeton, A. R., and Mishmar, D. 2009. “Mitochondrial Bioenergetics as a Major Motive Force of Speciation.” Bioessays 31:642–50. https://doi.org/10.1002/bies.200800139 CrossRefGoogle Scholar
Ghiselin, M. T. 1974/1992. “A Radical Solution to the Species Problem.” In The Units of Evolution: Essays on the Nature of Species, edited by Ereshefsky, Marc, 279–91. Cambridge, MA: MIT Press.Google Scholar
Griffiths, P. 1999. “Squaring the Circle: Natural Kinds with Historical Essences.” In Species: New Interdisciplinary Essays, edited by Robert, A. Wilson, 209–28. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Griffiths, P. 2002. “What Is Innateness?Monist 85: 7085. https://www.jstor.org/stable/27903758 CrossRefGoogle Scholar
Heine, K. B. 2021. Mitochondrial Behavior, Morphology, and Animal Performance. PhD diss., Auburn University. Auburn University AUETD. https://etd.auburn.edu/handle/10415/7952.Google Scholar
Heine, K. B., and Hood, W. R. 2020. “Mitochondrial Behaviour, Morphology, and Animal Performance.” Biological Reviews 95 (3):730–37. https://doi.org/10.1111/brv.12584 CrossRefGoogle ScholarPubMed
Heine, K. B., and Shech, E. 2021. “Roles of Mitonuclear Ecology and Sex in Conceptualizing Evolutionary Fitness.” Biology & Philosophy 36 (3): 29. https://doi.org/10.1007/s10539-021-09804-3 CrossRefGoogle Scholar
Hey, J. 2001. “The Mind of the Species Problem.” Trends in Ecology & Evolution 16:326–29. https://doi.org/10.1016/S0169-5347(01)02145-0 CrossRefGoogle ScholarPubMed
Hill, G. E. 2016. “Mitonuclear Coevolution as the Genesis of Speciation and the Mitochondrial DNA Barcode Gap.” Ecology & Evolution 6 (16):5831–42. https://doi.org/10.1002/ece3.2338 CrossRefGoogle ScholarPubMed
Hill, G. E. 2017. “The Mitonuclear Compatibility Species Concept.” The Auk: Ornithological Advances 134 (2):393409. https://doi.org/10.1642/AUK-16-201.1 CrossRefGoogle Scholar
Hill, G. E. 2019a. Mitonuclear Ecology. Oxford: Oxford University Press.CrossRefGoogle Scholar
Hill, G. E. 2019b. “Reconciling the Mitonuclear Compatibility Species Concept with Rampant Mitochondrial Introgression.” Integrative & Comparative Biology 59 (4):912–24. https://doi.org/10.1093/icb/icz019 CrossRefGoogle ScholarPubMed
Hill, G. E., Hood, W. R., Ge, Z., Grinter, R., Greening, C., Johnson, J. D., Park, N. R., Taylor, H. A., Andreasen, V. A., Powers, M. J., Justyn, N. M., Parry, H. A., Kavazis, A. N., and Zhang, Y. 2019c. “Plumage Redness Signals Mitochondrial Function in the House Finch.” Proceedings of the Royal Society B: Biological Sciences 286:20191354. https://doi.org/10.1098/rspb.2019.1354 CrossRefGoogle ScholarPubMed
Hill, G. E. 2020. “Genetic Hitchhiking, Mitonuclear Coadaptation, and the Origins of mt DNA Barcode Gaps.” Ecology & Evolution 10 (17):9048–59. https://doi.org/10.1002/ece3.6640 CrossRefGoogle ScholarPubMed
Hull, D. 1965. “The Effect of Essentialism on Taxonomy: Two Thousand Years of Stasis.” British Journal for the Philosophy of Science 15:314–26. https://doi.org/10.1093/bjps/XV.60.314 CrossRefGoogle Scholar
Hull, D. 1978. “A Matter of Individuality.” Philosophy of Science 4:335–60. https://doi.org/10.1086/288811 CrossRefGoogle Scholar
Hull, D. 1994. “Contemporary Systematic Philosophies.” In Conceptual Issues in Evolutionary Biology, 2nd ed., edited by Sober, E., 295330. Cambridge, MA: MIT Press.Google Scholar
Karnkowska, A., Vacek, V., Zubáčová, Z., Treitli, S. C., Petrželková, R., Eme, L., … and Hampl, V. 2016. “A Eukaryote without a Mitochondrial Organelle.” Current Biology 26 (10):1274–84. https://doi.org/10.1016/j.cub.2016.03.053 CrossRefGoogle ScholarPubMed
Kenyon, L., and Moraes, C. T. (1997). “Expanding the Functional Human Mitochondrial DNA Database by the Establishment of Primate Xenomitochondrial Cybrids.” Proceedings of the National Academy of Sciences 94 (17):9131–35. https://doi.org/10.1073/pnas.94.17.9131 CrossRefGoogle ScholarPubMed
Kitcher, P. 1984. “Species.” Philosophy of Science 51:308–33. https://doi.org/10.1086/289182 CrossRefGoogle Scholar
Kripke, S. 1980. Naming and Necessity. Cambridge, MA: Harvard University Press.Google Scholar
Kühlbrandt, W. 2015. “Structure and function of mitochondrial membrane protein complexes.” BMC Biology 13:111.CrossRefGoogle ScholarPubMed
Lane, N. 2005. Power, Sex, Suicide: Mitochondria and the Meaning of Life. Oxford: Oxford University Press.Google Scholar
Lane, N. 2009. “On the Origin of Bar Codes: Genetic Sequences in a Cell’s Mitochondria Can Be Used to Accurately Determine Species. Could This Be Because They Are Responsible for Creating What They Identify?Nature 462 (7271):272–75. https://link.gale.com/apps/doc/A213406385/AONE?u=anon∼ec9ae6fe&sid=googleScholar&xid=ba6ceaa8 CrossRefGoogle Scholar
LaPorte, J. 2004. Natural Kinds and Conceptual Change. Cambridge: Cambridge University Press.Google Scholar
Leslie, Sarah-Jane. 2013. “Essence and Natural Kinds: When Science Meets Preschooler Intuition.” In Oxford Studies in Epistemology, vol. 4, edited by Gendler, Tamar Szabó and Hawthorne, John, 108–65. Oxford: Oxford University Press.CrossRefGoogle Scholar
Levin, D. A. 2003. “The Cytoplasmic Factor in Plant Speciation.” Systematic Botany 28:511. https://doi.org/10.1043/0363-6445-28.1.5 Google Scholar
Lewens, T. 2012. “Species, Essence and Explanation.” Studies in History & Philosophy of Biological & Biomedical Sciences 43:751–57. https://doi.org/10.1016/j.shpsc.2012.09.013 CrossRefGoogle ScholarPubMed
Locke, J. 1689. An Essay Concerning Human Understanding. Edited by Nidditch, P. H., 1975. Oxford: Clarendon Press.Google Scholar
Mallet, J. 1995. “A Species Definition for the Modern Synthesis.” Trends in Ecology & Evolution 10 (7):294–99. https://doi.org/10.1016/0169-5347(95)90031-4 CrossRefGoogle ScholarPubMed
Matthen, M. 1998. “Biological Universals and the Nature of Fear.” Journal of Philosophy 95:105–32. https://doi.org/10.2307/2564712 CrossRefGoogle Scholar
Mayr, E. 1940. “Speciation Phenomena in Birds.” The American Naturalist 74 (752):249–78. https://doi.org/10.1086/280892 CrossRefGoogle Scholar
Mayr, E. 1961. “Cause and Effect in Biology.” Science 134:1501–6.CrossRefGoogle ScholarPubMed
Mayr, E. 1982. The Growth of Biological Thought. Cambridge, MA: Harvard University Press.Google Scholar
Okasha, S. 2002. “Darwinian Metaphysics: Species and the Question of Essentialism.” Synthese 131:191213. https://doi.org/10.1023/A:1015731831011 CrossRefGoogle Scholar
Okasha, S. 2023. “Does the Anti-essentialist Consensus about Species Rest on a Mistake?” http://philsci-archive.pitt.edu/22615/1/Anti-Essentialist%20Consensus%20Paper%20REVISED.pdf Google Scholar
Osada, N., and Akashi, H. 2012. “Mitochondrial–Nuclear Interactions and Accelerated Compensatory Evolution: Evidence from the Primate Cytochrome c Oxidase Complex.” Molecular Biology and Evolution 29 (1):337–46. https://doi.org/10.1093/molbev/msr211 CrossRefGoogle ScholarPubMed
Paterson, H. 1985. “The Recognition Concept of Species.” In Species and Speciation, Transvaal Museum Monograph, 4, edited by Vrba, E., 2129. Pretoria: Transvaal Museum.Google Scholar
Putnam, H. 1975. Mind, Language and Reality. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Rand, D. M., Haney, R. A., and Fry, A. J. 2004. “Cytonuclear Coevolution: The Genomics of Cooperation.” Trends in Ecology & Evolution 19 (12):645–53. https://doi.org/10.1016/j.tree.2004.10.003 CrossRefGoogle ScholarPubMed
Rosenberg, Alex. 1985. The Structure of Biological Science. New York: Cambridge University Press.CrossRefGoogle Scholar
Slater, Matthew H. 2013. Are Species Real? An Essay on the Metaphysics of Species. New York: Palgrave Macmillan.CrossRefGoogle Scholar
Sober, E. 1980. “Evolution, Population Thinking and Essentialism.” Philosophy of Science 47:350–83. https://doi.org/10.1086/288942 CrossRefGoogle Scholar
Sober, E. 2000. Philosophy of Biology. 2nd ed. Boulder, CO: Westview Press.Google Scholar
Sterelny, K., and Griffiths, P.. 1999. Sex and Death. Chicago: University of Chicago Press.CrossRefGoogle Scholar
Van Valen, L. 1976. “Ecological Species, Multispecies, and Oaks.” Taxon:233–9. https://doi.org/10.2307/1219444 CrossRefGoogle Scholar
Yaacov, B., Arbel-Thau, D. K., Zilka, Y., Ovadia, O., Bouskila, Ah., and Mishmar, D. 2012. “Mitochondrial DNA Variations, But Not Nuclear DNA, Sharply Divides Morphologically Identical Chameleons Along an Ancient Geographic Barrier.” PLoS ONE 7 (3):e31372. https://doi.org/10.1371/journal.pone.0031372CrossRefGoogle ScholarPubMed
Zachos, F. E. 2016. Species Concepts in Biology (vol. 801). Cham: Springer.CrossRefGoogle Scholar