Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-14T22:12:57.122Z Has data issue: false hasContentIssue false

Extragalactic Reality: The Case of Gravitational Lensing

Published online by Cambridge University Press:  01 April 2022

Ian Hacking*
Affiliation:
Institute for the History and Philosophy of Science and Technology, University of Toronto

Abstract

My Representing and Intervening (1983) concludes with what it calls an experimental argument for scientific realism about entities. The argument is evidently inapplicable to extragalactic astrophysics, but leaves open the possibility that there might be other grounds for scientific realism in that domain. Here I argue for antirealism in astrophysics, although not for any particular kind of antirealism. The argument is conducted by a detailed examination of some current research. It parallels the last chapter of (1983). Both represent the methodological opinion that abstract or semantic realism/antirealism debates are empty, and typically lead to confused or wrong conclusions because they pay so little attention to the details of a science.

Type
Research Article
Copyright
Copyright © 1989 by the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was done at the Institute for Advanced Study, Princeton, where the author was supported by an Isaac Walton Killam Research Fellowship (Canada Council), supplemented by funds from the Henry Luce Foundation (I.A.S.). The paper was presented at the “Newton and Scientific Realism” conference, Van Leer Institute, Jerusalem, April 27–30, 1987.

References

Adams, M. T., and Boronson, M. A. (1979), “Direct Imaging of the Twin QSOs 0957 + 561 A and B: The Gravitational Lens Interpretation”, Nature 282: 183185.CrossRefGoogle Scholar
Barnothy, J. M. (1965), “Quasars and the Gravitational Image Intensifier”, Astronomical Journal 70: 666.CrossRefGoogle Scholar
Barnothy, J. M., and Barnothy, M. F. (1968), “Galaxies as Gravitational Lenses”, Science 162: 348352.CrossRefGoogle ScholarPubMed
Barnothy, J. M., and Barnothy, M. F. (1983), “Quasars in a FIB Universe”, in J. P. Swings (ed.), Quasars and Gravitational Lenses: 24th Liège International Astrophysical Colloquium. Liège: Université de Liège, pp. 139142.Google Scholar
Blandford, R. D., and Narayan, R. (1986), “Fermat's Principle, Caustics, and the Classification of Gravitational Lens Images”, Astrophysical Journal 310: 568582.CrossRefGoogle Scholar
Blandford, R. D.; Phinney, E. S.; and Narayan, R. (1987), “1146 + 111 B, C: A Giant Gravitational Lens?Astrophysical Journal 313: 2836.CrossRefGoogle Scholar
Bourassa, R. R., and Kantowski, R. (1976), “Multiple Image Probabilities for a Spheroidal Gravitational Lens”, Astrophysical Journal 205: 674687.CrossRefGoogle Scholar
Burke, W. L. (1981), “Multiple Gravitational Imaging by Distributed Masses”, Astrophysical Journal 244: L1.CrossRefGoogle Scholar
Cartwright, N. (1983), How the Laws of Physics Lie. Oxford: Oxford University Press.CrossRefGoogle Scholar
Chang, K., and Refsdal, S. (1979), “Flux Variations of QSO 0957 + 561 A, B and Image Splitting by Stars Near the Light Path”, Nature 282: 561564.CrossRefGoogle Scholar
De Silva, L. N. K. (1970), “Quasi-Stellar Objects and Gravitational Lenses”, Nature 228: 11801181.CrossRefGoogle ScholarPubMed
Djorgovski, S., and Spinard, H. (1984), “Discovery of a New Gravitational Lens”, Astrophysical Journal 282: L1–L4.CrossRefGoogle Scholar
Dyer, C. C., and Roeder, R. C. (1972), “The Distance-Redshift Relation for Universes with No Intergalactic Medium”, Astrophysical Journal 174: L115–L117.CrossRefGoogle Scholar
Dyer, C. C., and Roeder, R. C. (1973), “Distance-Redshift Relations for Universes with Some Intergalactic Medium”, Astrophysical Journal 180: L31–L34.CrossRefGoogle Scholar
Dyer, C. C., and Roeder, R. C. (1980), “Possible Multiple Imaging by Spherical Galaxies”, Astrophysical Journal 238: L67–L70.CrossRefGoogle Scholar
Eddington, A. S. (1920), Space, Time and Gravitation. Cambridge: Cambridge University Press.Google Scholar
Dyer, C. C., and Roeder, R. C. (1931), “The Expansion of the Universe”, Monthly Notices of the Royal Astronomical Society 91: 412416.Google Scholar
Ehlers, J., and Schneider, P. (1986), “Self-Consistent Probabilities for Gravitational Lensing in Inhomogeneous Universes”, Astronomy and Astrophysics 140: 119124.Google Scholar
Einstein, A. (1936), “Lens-Like Action of a Star by the Deviation of Light for the Gravitational Field”, Science 84: 506507.CrossRefGoogle ScholarPubMed
Falco, E. E.; Gorenstein, M. V.; and Shapiro, I. I. (1985), “On Model-Dependent Bounds on H0 from Gravitational Images: Application to Q0957 + 561 A, B”, Astrophysical Journal 289: L1–L4.CrossRefGoogle Scholar
Gorenstein, M. V.; Shapiro, I. I.; Cohen, N. L.; Corey, B. E.; Falco, E. E.; and Marcaide, J. M. (1983), “Detection of a Compact Radio Source Near the Center of a Gravitational Lens: Quasar Image or Galactic Core”, Science 219: 5456.CrossRefGoogle ScholarPubMed
Gott, J. R. (1981), “Are Heavy Halos Made of Low Mass Stars? A Gravitational Lens Test”, Astrophysical Journal 243: 140146.CrossRefGoogle Scholar
Gott, J. R., and Gunn, J. E. (1974), “The Double Quasar 1548 + 115 A, B as a Gravitational Lens”, Astrophysical Journal 190: L105–L108.Google Scholar
Greenfield, P. E.; Roberts, D. H.; and Burke, B. F. (1980), “The Double Quasar 0957; + 561: Examination of the Gravitational Lens Hypothesis Using the Very Large Array”, Science 208: 495497.CrossRefGoogle ScholarPubMed
Gunn, J. E. (1981), “Gravitational Lenses in Astrophysics”, Annals of the New York Academy of Sciences 375: 287296.CrossRefGoogle Scholar
Hacking, I. (1983), Representing and Intervening. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hacking, I. (1989), “Astronomical Improbability”, in J. E. Fenstad, I. T. Frolov, and R. Hilpinen (eds.), Logic, Methodology and Philosophy of Science VIII. Proceedings of the Eighth International Congress, Moscow, USSR, August 1987. Amsterdam: North-Holland.Google Scholar
Harman, G. (1965), “The Inference to the Best Explanation”, Philosophical Review 74: 8895.CrossRefGoogle Scholar
Hewitt, A., and Burbidge, G. (1987), “A New Optical Catalog of Quasi-Stellar Objects”, Astrophysical Journal Supplement Series 63: 1246.CrossRefGoogle Scholar
Hogan, C., and Narayan, R. (1984), “Gravitational Lensing by Cosmic Strings”, Monthly Notices of the Royal Astronomical Society 211: 575591.CrossRefGoogle Scholar
Huchra, J.; Gorenstein, M.; Kent, S.; Shapiro, I; Smith, G.; Horine, E.; and Perley, R. (1985), “A New and Unusual Gravitational Lens”, Astronomical Journal 90: 691696.CrossRefGoogle Scholar
Lawrence, C. R.; Schneider, D. P.; Schmidt, M.; Bennett, C. L.; Hewitt, J. N.; Burke, B. F.; Turner, E. L.; and Gunn, J. E. (1984), “Discovery of a New Gravitational Lens System”, Science 223: 4649.CrossRefGoogle ScholarPubMed
Lodge, O. S. (1919), “Gravitation and Light”, Nature 104: 354.CrossRefGoogle Scholar
Ostriker, J. P., and Vietri, M. (1985), “Are Some BL Lac Objects Artefacts of Gravitational Lensing?Nature 318: 446448.CrossRefGoogle Scholar
Paczynski, B. (1986a), “Will Cosmic Strings Be Discovered Using the Space Telescope?Nature 319: 567568.CrossRefGoogle Scholar
Paczynski, B. (1986b), “Is There a Black Hole in the Sky?Nature 321: 419420.CrossRefGoogle Scholar
Paczynski, B. (1986c), “Gravitational Microlensing at Large Optical Depth”, Astrophysical Journal 301: 503516.CrossRefGoogle Scholar
Paczynski, B., and Gorski, K. (1981), “Another Possible Case of a Gravitational Lens”, Astrophysical Journal 248: L101–L104.CrossRefGoogle Scholar
Peacock, J. A. (1982), “Gravitational Lenses and Cosmological Evolution”, Monthly Notices of the Royal Astronomical Society 199: 9871006.CrossRefGoogle Scholar
Peacock, J. A. (1983), “Review of a Gravitational-Lens Theory”, in J. P. Swings (ed.), Quasars and Gravitational Lenses: 24th Liège International Astrophysical Colloquium. Liège: Université de Liège, pp. 86104.Google Scholar
Peebles, J. (1980), The Large Scale Structure of the Universe. Princeton: Princeton University Press.Google Scholar
Pooley, G. G.; Browne, I. W. A.; Daintree, E. J.; Moore, P. K.; Noble, R. G.; and Walsh, D. (1979), “Radio Studies of the Double QSO, 0957 + 561 A, B”, Nature 280: 461464.CrossRefGoogle Scholar
Porcas, R. W.; Booth, R. S.; Browne, I. W. A.; Walsh, D.; and Wilkinson, P. N. (1979), “VLBI Observations of the Double QSO, 0957 + 561 A, B”, Nature 282: 385386.CrossRefGoogle Scholar
Press, W. H., and Gunn, J. E. (1973), “Method for Detecting a Cosmological Density of Condensed Objects”, Astrophysical Journal 185: 397412.CrossRefGoogle Scholar
Refsdal, S. (1964a), “The Gravitational Lens Effect”, Monthly Notices of the Royal Astronomical Society 128: 295306.CrossRefGoogle Scholar
Refsdal, S. (1964b), “On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect”, Monthly Notices of the Royal Astronomical Society 128: 307310.CrossRefGoogle Scholar
Refsdal, S. (1966), “On the Possibility of Testing Cosmological Theories from the Gravitational Lens Effect”, Monthly Notices of the Royal Astronomical Society 132: 101111.CrossRefGoogle Scholar
Roberts, D. H.; Greenfield, P. E.; and Burke, B. F. (1979), “The Double Quasar 0957 + 561: A Radio Study at 6-Centimetres Wavelength”, Science 205: 894896.CrossRefGoogle Scholar
Russell, H. N. (1937), “A Relativistic Eclipse”, Scientific American (February) 156: 7677.CrossRefGoogle Scholar
Salmon, W. (1984), Scientific Explanation and the Causal Structure of the World. Princeton: Princeton University Press.Google Scholar
Sanitt, N. (1971), “Quasi-Stellar Objects and Gravitational Lenses”, Nature 234: 199203.CrossRefGoogle Scholar
Schneider, P. (1984), “The Amplification Caused by Gravitational Bending of Light”, Astronomy and Astrophysics 140: 119124.Google Scholar
Schneider, P. (1985), “A New Formulation of Gravitational Lens Theory, Time-Delay, and Fermat's Principle”, Astronomy and Astrophysics 143: 413420.Google Scholar
Schneider, P. (1986), “Statistical Gravitational Lensing and Quasar-Galaxy Association”, Astrophysical Journal 300: L31–L34.CrossRefGoogle Scholar
Schneider, P., and Weiss, A. (1987), “A Gravitational Lens Origin for AGN-Variability? Consequences of Micro-Lensing”, Astronomy and Astrophysics 171: 4965.Google Scholar
Shapere, D. (1982), “The Concept of Observation in Science and Philosophy”, Philosophy of Science 49: 485525.CrossRefGoogle Scholar
Soifer, B. T.; Neugebauer, G.; Matthews, K.; Becklin, E. E.; Wynn-Williams, C. G.; and Capps, R. (1980), “IR Observations of the Double Quasar 0957 + 561 A, B and the Intervening Galaxy”, Nature 285: 9193.CrossRefGoogle Scholar
Stockton, A. (1980), “The Lens Galaxy of the Twin QSO 0957 + 561”, Astrophysical Journal 242: L141–L144.Google Scholar
Turner, E. L. (1980), “The Effect of Undetected Gravitational Lenses on Statistical Measure of Quasi Evolution”, Astrophysical Journal 242: L135–L139.CrossRefGoogle Scholar
Turner, E. L.; Ostriker, J. P.; and Gott, J. R. (1984), “The Statistics of Gravitational Lenses: The Distribution of Image Angular Separations and Lens Redshifts”, Astrophysical Journal 284: 122.CrossRefGoogle Scholar
Tyson, J. A. (1985), “Image Distortion Near Galaxies: Dwarfs or Lensing?Nature 316: 799800.CrossRefGoogle Scholar
Van Fraasen, B. C. (1980), The Scientific Image. Oxford: Oxford University Press.CrossRefGoogle Scholar
Walsh, D. (1983), “Observations of Gravitational Lenses”, in J. P. Swings (ed.), Quasars and Gravitational Lenses: 24th Liège International Astrophysical Colloquium. Liège: Université de Liège, pp. 106124.Google Scholar
Walsh, D.; Carswell, R. F.; and Weymann, R. J. (1979), “0957 + 561 A, B: Twin Quasi-Stellar Objects or Gravitational Lens? Nature 279: 381384.CrossRefGoogle Scholar
Weedman, D. W.; Weymann, R. J.; Green, R. F.; and Heckman, T. M. (1982), “Discovery of a Third Gravitational Lens”, Astrophysical Journal 255: L5–L9.CrossRefGoogle Scholar
Weinburg, S. (1972), Gravitational and Cosmology. New York: John Wiley & Sons.Google Scholar
Weymann, R. J.; Latham, D.; Angel, J. R. P.; Green, R. F.; Liebert, J. W.; Turnshek, D. A.; Turnshek, D. E.; and Tyson, J. A. (1980), “The Triple QSO PG1115 + 08: Another Probable Gravitation Lens”, Nature 285: 641643.CrossRefGoogle Scholar
Young, P.; Deverill, R. S.; Gunn, J. E.; Westphal, J. A.; and Kristian, J. (1981), “The Triple Quasar Q1115 + 080 A, B, C: A Quintuple Gravitational Lens Image?Astrophysical Journal 244: 723735.CrossRefGoogle Scholar
Young, P.; Gunn, J. E.; Kristian, J.; Oke, J. B; and Westphal, J. A. (1980), “The Double Quasar Q0957 + 561 A, B: A Gravitational Lens Image Formed by a Galaxy at Z=0.39”, Astrophysical Journal 241: 507520.CrossRefGoogle Scholar
Young, P.; Gunn, J. E.; Kristian, J.; Oke, J. B; and Westphal, J. A. (1981), “Q0957 + 561: Detailed Models of the Gravitational Lens Effect”, Astrophysical Journal 244: 736755.CrossRefGoogle Scholar
Zwicky, F. (1937a), “Nebulae as Gravitational LensesPhysical Review 51: 290.CrossRefGoogle Scholar
Zwicky, F. (1937b), “On the Probability of Detecting Nebulae Which Act as Gravitational Lenses”, Physical Review 51: 679.CrossRefGoogle Scholar