Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-15T21:57:50.416Z Has data issue: false hasContentIssue false

Exploring genetic diversity of Centella asiatica (L.) Urb. across six Korean island regions: implications for conservation and utilization

Published online by Cambridge University Press:  04 January 2024

Shin Ae Lee
Affiliation:
Division of Genetic Resources, Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do, Republic of Korea
Hyemin Seo
Affiliation:
Division of Genetic Resources, Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do, Republic of Korea
Seahee Han
Affiliation:
Division of Botana, Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do, Republic of Korea
Jun Seong Jeong
Affiliation:
Division of Genetic Resources, Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do, Republic of Korea
Tae Won Jung
Affiliation:
Division of Genetic Resources, Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do, Republic of Korea
Kyung Jun Lee*
Affiliation:
Division of Genetic Resources, Honam National Institute of Biological Resources, Mokpo-si, Jeollanam-do, Republic of Korea
*
Corresponding author: Kyung Jun Lee; Email: lkj5214@hnibr.re.kr

Abstract

Despite the increasing demand for diverse Centella asiatica (L.) Urb. species in Korea, studies on related topics are limited, with the majority of studies focusing on functional evaluations, rather than genetic diversity. Therefore, in this study, we explored the genetic diversity of C. asiatica, a valuable medicinal plant collected from six island regions in Korea, using genotyping-by-sequencing analysis. Specifically, we aimed to understand plant genetic variations, population structure and the potential for conservation and genetic improvement. The results indicated relatively high genetic diversity among the samples collected from the six island regions but low genetic differentiation among their populations. Two distinct genetic clusters were identified; however, even within these clusters, genetic differentiation was minimal. The lack of significant isolation-by-distance patterns and evidence of potential clonal spread suggested that some individuals that adapted to colder Korean conditions achieved dominance. This study highlights the importance of assessing the genetic diversity of native C. asiatica in Korea and explores the possibility of conducting follow-up studies to understand the phytochemical content and bioactivity variations among the individuals. This information can aid in the selection of superior resources and effective utilization of plant genetic resources for cultivar development and other applications.

Type
Short Communication
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, DH, Novembre, J and Lange, K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19, 16551664.CrossRefGoogle ScholarPubMed
Begna, T and Begna, T (2021) Role and economic importance of crop genetic diversity in food security. International Journal of Agricultural Science and Food Technology 7, 164169.Google Scholar
Choi, JN, Oh, MW, Lee, HJ, Lee, JH, Jeong, JT, Lee, YJ, Chang, JK and Park, CG (2021) Comparison of growth characterisitics, asiaticoside content and antioxidant activities of Centella asiatica (L.) Urb. Korean Journal of Plant Resources 34, 4451.Google Scholar
Delbo, M and Calapai, G (2010) Assessment Report on Centella asiatica (L.) Urban, Herba. London, UK: European Medicines Agency Science Medicines Health; European Medicines Agency.Google Scholar
Elshire, RJ, Glaubitz, JC, Sun, Q, Poland, JA, Kawamoto, K, Buckler, ES and Mitchell, SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6, e19379.CrossRefGoogle ScholarPubMed
Goudet, J (2005) Hierfstat, a package for R to compute and test hierarchical F-statistics. Molecular Ecology Notes 5, 184186.CrossRefGoogle Scholar
Govindaraj, M, Vetriventhan, M and Srinivasan, M (2015) Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International 2015, 431487.CrossRefGoogle ScholarPubMed
Ha, JH, Kwon, MC, Kim, SS, Jeong, MH, Hwang, B and Lee, HY (2010) Enhancement of skin-whitening and UV-protective effects of Centella asiatica L. urban by utrasonification process. Korean Journal of Medicinal Crop Science 18, 7985.Google Scholar
Jombart, T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 14031405.CrossRefGoogle Scholar
Kamvar, ZN, Tabima, JF and Grünwald, NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281.CrossRefGoogle ScholarPubMed
Lee, KJ, Lee, J-R, Sebastin, R, Shin, M-J, Kim, S-H, Cho, G-T and Hyun, DY (2019) Assessment of genetic diversity of tea germplasm for its management and sustainable use in Korea genebank. Forests 10, 780.CrossRefGoogle Scholar
Ma, KB, Yang, S-J, Jo, Y-S, Kang, SS and Nam, M (2021) Development of Kompetitive Allele Specific PCR markers for identification of persimmon varieties using genotyping-by-sequencing. Electronic Journal of Biotechnology 49, 7281.CrossRefGoogle Scholar
Mathavaraj, S and Sabu, KK (2021) Genetic diversity and structure revealed by genomic microsatellite markers in Centella asiatica (L.) Urb., a plant with medicinal potential. Molecular Biology Reports 48, 73877396.CrossRefGoogle ScholarPubMed
Padgham, M and Sumner, MD (2021) geodist: Fast, dependency-free geodesic distance calculations. R package version 0.0, 7.Google Scholar
Padmalatha, K and Prasad, MNV (2008) Genetic diversity in Centella asiatica (L.) Urb., a memory-enhancing neutraceutical herb, using RAPD markers. Medicinal and Aromatic Plant Science and Biotechnology 2, 9095.Google Scholar
R Core Team, (2023) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Swarup, S, Cargill, EJ, Crosby, K, Flagel, L, Kniskern, J and Glenn, KC (2021) Genetic diversity is indispensable for plant breeding to improve crops. Crop Science 61, 839852.CrossRefGoogle Scholar
Tripathy, S, Verma, DK, Thakur, M, Chakravorty, N, Singh, S and Srivastav, PP (2022) Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: a review. Food Bioscience 49, 101864.CrossRefGoogle Scholar
Yousaf, S, Hanif, MA, Rehman, R, Azeem, MW and Racoti, A (2020) Chapter 32 – Indian pennywort. In Hanif, MA, Nawaz, H, Khan, MM and Byrne, HJ (eds), Medicinal Plants of South Asia. Amsterdam, Netherlands: Elsevier, pp. 423437.CrossRefGoogle Scholar
Supplementary material: File

Lee et al. supplementary material

Lee et al. supplementary material
Download Lee et al. supplementary material(File)
File 101.2 KB