Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-31T09:35:43.330Z Has data issue: false hasContentIssue false

Genetic characterization of new source of resistance for tomato leaf curl New Delhi virus (ToLCNDV) from snapmelon (C. melo var. momordica)

Published online by Cambridge University Press:  15 February 2024

K. Padmanabha
Affiliation:
Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
H. Choudhary*
Affiliation:
Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
Gyan Mishra
Affiliation:
Division of Genetics, ICAR-Indian Indian Agricultural Research Institute, New Delhi 110012, India
Bikash Mandal
Affiliation:
Advanced Center for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
Amolkumar Solanke
Affiliation:
ICAR-National Institute for Plant Biotechnology, New Delhi 110012, India
Dwij C. Mishra
Affiliation:
ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
Ramesh Kumar Yadav
Affiliation:
Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
*
Corresponding author: H. Choudhary; Email: harshahit2001@yahoo.co.in

Abstract

This study aimed to understand the genetics of tomato leaf curl New Delhi virus (ToLCNDV) in the identified novel source of resistance from Indian melon germplasm DSM-19 (Cucumis melo var. momordica) as viral diseases in muskmelon cause significant economic yield loss. To achieve this, a cross was made between the highly susceptible genotype Pusa Sarda (C. melo var. inodorus), known for its desirable fruit characters, and the resistant source DSM-19 to generate the suitable populations for inheritance study. These populations were screened under natural epiphytotic conditions and further validated through challenge inoculation with viruliferous whiteflies. The inheritance of ToLCNDV resistance in snapmelon germplasm DSM-19 was identified as monogenic recessive in both the screening methods. Moreover, a cleaved amplified polymorphic sequence (CAPS) marker named ‘CAPS 16 (2)’ was designed near to SNP marker D16 located on chromosome 11 of melon, and it was found to be linked to the ToLCNDV resistance gene in DSM-19. This is the first report on genetics of ToLCNDV resistance in snapmelon germplasm from India. Snapmelon line DSM-19 can be used as a source for fine mapping and introgression of the ToLCNDV resistance into susceptible muskmelon cultivars.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of National Institute of Agricultural Botany

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Caballero, R, Cyman, S and Schuster, DJ (2013) Monitoring insecticide resistance in biotype b of Bemisia tabaci (Hemiptera: Aleyrodidae) in Florida. Florida Entomologist 96, 12431256.Google Scholar
Chang, HH, Ku, HM, Tsai, WS, Chien, RC and Jan, FJ (2010) Identification and characterization of a mechanical transmissible begomovirus causing leaf curl on oriental melon. The European Journal of Plant Pathology 127, 219228.CrossRefGoogle Scholar
Choudhary, H, Dhar, S and Kalia, P (2013) Identification of new sources of resistance for Fusarium wilt of muskmelon. Book of Abstract of National Symposium on Abiotic and Biotic Stress Management in Vegetable Crops. Varanasi, India: IIVR, p. 23.Google Scholar
Doyle, JJ and Doyle, JL (1990) Isolation of plant DNA from fresh tissue. Focus 12, 3940.Google Scholar
EPPO (2020) European and Mediterranean plant protection organization. Available at https://www.eppo.int/ACTIVITIES/plant (Accessed 22 Nov 2020).Google Scholar
Fortes, IM, Sánchez-Campos, S, Fiallo-Olivé, E, Díaz-Pendón, JA, Navas-Castillo, J and Moriones, E (2016) A novel strain of tomato leaf curl New Delhi virus has spread to the Mediterranean basin. Viruses 8, 307.CrossRefGoogle ScholarPubMed
Islam, S, Munshi, AD, Mandal, B, Kumar, R and Behera, TK (2010) Genetics of resistance in Luffa cylindrica Roem. Against Tomato leaf curl New Delhi virus. Euphytica 174, 8389.CrossRefGoogle Scholar
Juarez, M, Tovar, R, Fiallo-Olive, E, Aranda, MA, Gonsalves, B, Castillo, P, Moriones, E and Navas-Castillo, J (2014) First detection of tomato leaf curl New Delhi virus infecting Zucchini in Spain. Plant Disease 98, 857858.Google Scholar
Juárez, M, Rabadán, MP, Martínez, LD, Tayahi, M, Grande-Pérez, A and Gómez, P (2019) Natural hosts and genetic diversity of the emerging tomato leaf curl New Delhi virus in Spain. Frontiers in Microbiology 140, 114. doi: 10.3389/fmicb.2019.00140.Google Scholar
Jyothsna, P, Haq, QMI, Singh, P, Sumiya, KV, Praveen, S, Rawat, R, Briddon, RW and Malathi, VG (2013) Infection of tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus with betasatellites, results in enhanced level of helper virus components and antagonistic interaction between DNA B and betasatellites. Applied Microbiology and Biotechnology 97, 54575471.CrossRefGoogle ScholarPubMed
Kaur, M, Varalakshmi, B, Kumar, M, Rao, ES, Pitchaimuthu, M, Mahesha, B, Venugopalan, R and Reddy, DCL (2021) Genetic analysis of yellow mosaic disease resistance in Loofah. Australasian Plant Pathology 50, 407414.Google Scholar
Kheireddine, AA, Sifres, C, Sáez, B, Pico, and López, C (2019) First report of tomato leaf curl New Delhi virus infecting cucurbit plants in Algeria. Plant Disease 103, 3291.Google Scholar
Ling, KS, Harris, K, Meyer, JDF, Levi, A, Guner, N, Wexner, TC and Havey, MJ (2008) Cucurbitaceae, Proceedings of the IX th EUCARPIA meeting on genetics and breeding of Cucurbitaceae, INRA, Avignon (France), May, 21-24,213-218.Google Scholar
Lopez, C, Ferriol, M and Pico, MB (2015) Mechanical transmission of tomato leaf curl New Delhi virus to cucurbit germplasm: selection of tolerance sources in Cucumis melo. Euphytica 204, 679691.CrossRefGoogle Scholar
Mandal, B (2010) Emergence of begomovirus diseases in cucurbits in India. In Sharma, P, Gaur, RK and Ikegami, M (eds), Emerging Geminiviral Diseases and Their Management. New York, USA: Nova Publisher, p. 242.Google Scholar
Mansoor, S, Zafar, Y and Briddon, RW (2006) Geminivirus disease complexes: the threat is spreading. Trends in Plant Science 11, 209212.Google Scholar
Masegosa, JR, Martinez, C, Aguado, E, Garcia, A, Cebrian, G, Iglesias-Moya, J, Paris, HS and Jamilena, M (2020) Response of cucurbita spp. to tomato leaf curl New Delhi Virus inoculation and identification of a dominant source of resistance in Cucurbita moschata. Plant Pathology 70, 206218.CrossRefGoogle Scholar
Mnari-Hattab, M, Zammouri, S, Belkadhi, MS, Bellon Doña, D, ben Nahia, E and Hajlaoui, MR (2015) First report of tomato leaf curl New Delhi virus infecting cucurbits in Tunisia. New Disease Reports 31, 121.Google Scholar
Munshi, AD and Choudhary, H (2014) Muskmelon. In Peter, KV and Hazra, P (eds), Handbook of Vegetables, vol. 5. New Delhi: Studium Press, pp. 271310.Google Scholar
Murray, MG and Thompson, WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8, 43214326.CrossRefGoogle ScholarPubMed
Nongpiur, R, Soni, P, Karan, R, Singla-Pareek, SL and Pareek, A (2012) Histidine kinases in plants. Plant Signaling and Behavior 7, 12301237.Google Scholar
Orfanidou, CG, Malandraki, L, Beris, D, Kektsidou, O, Vassilakos, N, Varveri, C, Katis, NI and Maliogka, VI (2019) First report of tomato lead curl New Delhi virus in zucchini crops in Greece. Journal of Plant Pathology 101, 799.Google Scholar
Padmanabha, K, Choudhary, H, Mishra, GP, Mandal, B, Solanke, AU, Mishra, DC and Yadav, RK (2022) Genetic analysis of resistance to tomato leaf curl New Delhi virus in muskmelon (Cucumis melo L.). Indian Journal of Genetics and Plant Breeding 82, 499506.Google Scholar
Padmanabha, K, Choudhary, H, Mishra, GP, Mandal, B, Solanke, AU, Mishra, DC and Yadav, RK (2023) Identifying new sources of resistance to tomato leaf curl New Delhi virus from Indian melon germplasm by designing an improved method of field screening. Genetic Resources and Crop Evolution. https://doi.org/10.1007/s10722-023-01744-zCrossRefGoogle Scholar
Pan, RS and More, TA (1996) Screening of melon (Cucumis melo L.) germplasm for multiple disease resistance. Euphytica 88, 125128.Google Scholar
Panno, S, Lacono, G, Davino, M, Marchione, S, Zappardo, V, Bella, P, Tomassoli, L, Accotto, GP and Davino, S (2016) First report of tomato leaf curl New Delhi virus affecting zucchini squash in an important horticultural area of southern Italy. New Disease Reports 33, 6.Google Scholar
Panse, VG and Sukhatme, RV (1985) Statistical Methods for Agricultural Workers, 4th edn. New Delhi: ICAR.Google Scholar
Panthee, D and Chen, F (2009) Genomics of fungal disease resistance in tomato. Current Genomics 1, 3039.Google Scholar
Papidam, M, Beachy, RN and Fouquet, CM (1995) Tomato leaf curl geminivirus from India has a bipartite genome and coat protein is not essential for infectivity. Journal of General Virology 76, 2535.CrossRefGoogle Scholar
Pitrat, M, Hanelt, P and Hammer, K (2000) Some comments on intraspecific classification of cultivars of melon. Acta Horticultrae 510, 2936.CrossRefGoogle Scholar
Pratap, D, Kashikar, AR and Mukherjee, SK (2011) Molecular characterization and infectivity of a tomato leaf curl New Delhi virus variant associated with newly emerging yellow mosaic disease of eggplant in India. Virology Journal 8, 305.CrossRefGoogle ScholarPubMed
Romay, G, Pitrat, M, Lecoq, H, Wipf-Scheibel, C, Millot, P, Girardot, G and Desbiez, C (2019) Resistance against melon chlorotic mosaic virus and tomato leaf curl New Delhi virus in melon. Plant Disease 103, 29132919.Google Scholar
Ruiz, ML, Simón, A, Velasco, L, García, MC and Janssen, D (2015) First report of tomato leaf curl New Delhi virus infecting tomato in Spain. Plant Disease 99, 894.CrossRefGoogle Scholar
Saez, C, Martinez, C, Ferriol, M, Manzano, S, Velasco, L, Jamilena, M, Lopez, C and Pico, B (2016) Resistance to tomato leaf curl New Delhi virus in Cucurbita spp. Annals of Applied Biology 169, 91105.Google Scholar
Saez, C, Esteras, C, Martínez, C, Ferriol, M, Dhillon, NPS, Lopez, C and Pico, B (2017) Resistance to tomato leaf curl New Delhi virus in melon is controlled by a major QTL located in chromosome 11. Plant Cell Reports 36, 15711584.CrossRefGoogle Scholar
Saez, C, Martínez, C, Montero-Pau, J, Esteras, C, Sifres, A, Blanca, J, Ferriol, M, Lopez, C and Pico, B (2020) A major QTL located in chromosome 8 of Cucurbita moschata is responsible for resistance to tomato leaf curl New Delhi virus. Frontiers in Plant Science 11, 118.CrossRefGoogle Scholar
Saez, C, Ambrosio, LGM, Miguel, SM, Valcarcel, JV, Diez, MJ, Pio, B and Lopez, C (2021) Resistant sources and genetic control of resistance to ToLCNDV in cucumber. Microorganisms 9, 117.Google Scholar
Sahu, PP, Rai, NK, Chakraborty, S, Singh, M, Chandrappa, PH, Ramesh, B, Chattopadhyay, D and Prasad, M (2010) Tomato cultivar tolerant to tomato leaf curl New Delhi virus infection induces virus specific short interfering RNA accumulation and defence associated host gene expression. Molecular Plant Pathology 11, 531544.Google Scholar
Sebastian, P, Schaefer, H, Telford, IRH and Renner, SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. The Proceedings of the National Academy of Sciences 107, 1426914273.CrossRefGoogle Scholar
Sifres, A, Sáez, C, Ferriol, M, Selmani, EA, Riado, J, Pico, B and López, C (2018) First report of tomato leaf curl New Delhi virus infecting zucchini in Morocco. Plant Diseases 102, 1045.CrossRefGoogle Scholar
Slater, AT, Cogan, NOI and Forster, JW (2013) Cost analysis of the application of marker-assisted selection in potato breeding. Journal of Plant Molecular Breeding 32, 299310.Google Scholar
Sohrab, SS (2005) Variability in the geminiviruses infecting cucurbits (PhD thesis). Jamia Milia Islamia, New Delhi.Google Scholar
Srivastava, KM, Hallan, V, Raizada, RK, Chandra, G, Singh, BP and Sane, PV (1995) Molecular cloning of Indian tomato leaf curl virus genome following a simple method of concentrating the supercoiled replicative form of viral DNA. The Journal of Virological Methods 51, 297304.Google Scholar
Valera, DL, Belmonte, LJ, Molina-Aiz, FD and López, A (2016) Greenhouse Agriculture in Almeria: A Comprehensive Techno-Economic Analysis. Almería, Spain: Cajamar Caja Rural.Google Scholar
Varma, A, Mandal, B and Singh, MK (2011) Global emergence and spread of whitefly (Bemisia tabaci) transmitted geminiviruses. In Thompson, WMO (ed.), The Whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) Interaction with Geminivirus-Infected Host Plants. Dordrecht: Springer, pp. 205292. doi: 10.1007/978-94-007-1524-0_10.Google Scholar
Whitaker, TW and Davis, GN (1962) Cucurbits: Botany, Cultivation and Utilization. New York: Interscience Publications.Google Scholar
Wilisiani, F, Neriya, Y, Tagami, M, Kaneko, M, Hartono, S, Nishigawa, H and Natsuaki, T (2019) Complete genome sequence of tomato leaf curl New Delhi virus from Luffa in Indonesia. Microbiology Resource Announcements 8, 15.Google Scholar
Williams, PH (1980) Black rot: a continuing threat to world crucifers. Plant Disease 64, 736742.Google Scholar
Yeam, I (2016) Current advances and prospectus of viral resistance in horticultural crops. Horticulture, Environment, and Biotechnology 57, 113122.CrossRefGoogle Scholar