Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T10:31:56.880Z Has data issue: false hasContentIssue false

Moss flavonoids and their ultrastructural localization under enhanced UV-B radiation

Published online by Cambridge University Press:  27 October 2009

Tiia Taipale
Affiliation:
Division of Botany, Department of Biology, University of Oulu, PO Box 3000, Oulu FIN-90014, Finland and Thule Institute, University of Oulu, PO Box 7300, Oulu, FIN-90014, Finland
Satu Huttunen
Affiliation:
Division of Botany, Department of Biology, University of Oulu, PO Box 3000, Oulu FIN-90014, Finland and Thule Institute, University of Oulu, PO Box 7300, Oulu, FIN-90014, Finland

Abstract

A study was made of methanol-extractable UV-B-absorbing pigments under enhanced UV-B treatment. UV-B-absorbing pigments in two common ectohydric mosses showed seasonal variation during the summer months. Pigment contents were highest in June, decreased in July, and thereafter remained unchanged until September. In Hylocomium splendens, a significant increase of pigments was observed at the end of the experiment. The intracellular localization of caffeine-stabilized flavonoids was manifested as dark electron-dense deposits in the cell walls and intracellular dark deposits in the cell plasma. The dark deposits in the cell walls of Pleurozium schreberi were located either in the outer part of the cell wall or in the middle lamellae of the wall structures. Hylocomium splendens had a stratified cell-wall structure, in which three dark electron-dense cell layers could be identified. Intracellular deposits were located in different parts of the cell, but electron-dense deposits were observed at the cell margins and in the proximity of the nucleus. Although certain cell ultrastructural disturbances (for example, lipid accumulation, chloroplast disintegration) in moss leaf cells were observed, the short-term UV-B treatment did not increase the intensity of the dark deposits.

Type
Articles
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asakava, Y. 1995. Chemical constituents of the bryophytes. Vienna: Springer Verlag (Progress in the chemistry of organic natural products 65).Google Scholar
Austin, J., Butchart, N., and Shine, K. P.. 1992. Possibility of an Arctic ozone hole in a doubled-C02 climate. Nature 360 (6401): 221225.CrossRefGoogle Scholar
Bäck, J., and Huttunen, S.. 1992. Structural responses of needles of conifer seedlings to acid rain treatment. New Phytologist 120 (1): 7788.CrossRefGoogle Scholar
Barsig, M., Schneider, K., and Gehrke, C.. 1998. Effects of UV-B radiation on fine structure, carbohydrates and pigments in Polytrichum commune. The Bryologist 101 (3): 357365.CrossRefGoogle Scholar
Becker, R., Mues, R., Zinsmeister, H. D., Herzog, F., and Geiger, H.. 1986. A new biflavone and further flavonoids from the moss Hylocomium splendens. Zeitschrift für Naturforsch 41C: 507510.CrossRefGoogle Scholar
Björn, L.-O. 1999. Ultraviolet-B radiation, the ozone layer and ozone depletion. In: Rozema, J. (editor). Stratospheric ozone depletion, the effects of enhanced UV-B radiation on terrestrial ecosystems. Leiden: Backhuys Publishers: 2137.Google Scholar
Brinkmeier, E., Hahn, H., Seeger, T., Geiger, H., and Zinsmeister, H. D.. 1999. Jahreszeitliche Schwankungen von Flavonoidgehalten in Laubmoosen. Biochemical Systematics and Ecology 27: 427435.CrossRefGoogle Scholar
Caldwell, M. M. 1971. Solar UV irradiation and the growth and development of higher plants. In: Giese, A.C. (editor). Photophysiology. New York: Academic Press: 131177.CrossRefGoogle Scholar
Charest, P. M., Brisson, L., and Ibrahim, R. K.. 1986. Ultrastructural features of flavonoid accumulation in leaf cells of Crysosplenium americanum. Protoplasma 134 (2–3): 95101.CrossRefGoogle Scholar
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.. 1985. Large losses of total ozone in Antarctica reveal seasonal CIOX-NOX interaction. Nature 315 (6016): 207210.CrossRefGoogle Scholar
Gehrke, C. 1999. Impactsof enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. Ecology 80 (6): 18441851.CrossRefGoogle Scholar
Geiger, H., Anhut, S., and Zinsmeister, H. D.. 1998. Biflavones from some mosses. Zeitschrift für Naturforsch 48C: 14.Google Scholar
Geiger, H., Seeger, T., Zinsmeister, H. D., and Frahm, J. P. 1997. The occurrence of flavonoids in arthodontous mosses – an account of the present knowledge. Journal of the Hattori Botanical Laboratory (83): 273308.Google Scholar
Hoque, E., and Remus, G. 1999. Natural UV-screening mechanisms of Norway spruce (Picea abies L. Karst.) needles. Photochemistry and Photobiology 69 (2): 177192.Google ScholarPubMed
Johanson, U., Gehrke, C., Björn, L. O., Callaghan, T. V., and Sonesson, M.. 1995. The effects of enhanced UV-B radiation on a subarctic heath ecosystems. Ambio 24 (2): 106111.Google Scholar
Kälviäinen, E., Karunen, P., and Ekman, R.. 1985. Agerelated contents of polymerized lipids in the ectohydric forest mosses Pleurozium schreberi and Hylocomium splendens. Physiologia Plantarum 65 (3): 269274.CrossRefGoogle Scholar
Laakso, K., Sullivan, J. H., and Huttunen, S.. 2000. The effects of UV-B radiation on epidermal anatomy in loblolly pine (Pinus taeda L.) and Scots pine (Pinus sylvestris L.). Plant, Cell and Environment 23 (5): 461472.CrossRefGoogle Scholar
Logemann, E., Tavernaro, A., Schultz, W., Somssich, I. E., and Hahlbrock, K.. 2000. UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. Proceedings of the National Academy of Sciences of the United States of America 97 (4): 19031907.CrossRefGoogle ScholarPubMed
Markham, K. R., Ryan, K. G., Bloor, S. J., and Mitchell, K. A.. 1998. An increase in the luteolin:apigenin ratio in Marchantia polymorpha on UV-B enhancement. Phytochemistry 48 (5): 791794.CrossRefGoogle Scholar
Mirecki, R. M. and Teramura, A. H.. 1984. Effects of ultraviolet- B radiation on soybean. Plant Physiology 74 (3): 475480.CrossRefGoogle ScholarPubMed
Mues, R. 2000. Chemical constituents and biochemistry. In: Shaw, J., and Goffinet, B. (editors). Bryophyte biology. Cambridge: Cambridge University Press: 150181.CrossRefGoogle Scholar
Schnitzler, J. P., Jungblut, T. P., Heller, W., Kofferlein, M., Hutzler, P., Heinzmann, U., Schmelzer, E., Ernst, D., Langebartels, C., and Sandermann, H. Jr 1996. Tissue localization of UV-B-screening pigments and of chalcone synthase mRNA in needles of Scots pine seedlings. New Phytologist 132 (2): 247258.CrossRefGoogle Scholar
Searlers, P. S., Flint, S. D., and Caldwell, M. M.. 2001. A meta-analysis of plant field studies simulating stratospheric ozone depletion. Oecologia 127 (1): 110.CrossRefGoogle Scholar
Seeger, T. 1992. Biflavonoide und strukturverwandte Verbindungen aus Laubmoosen under besonderer Berucksichtigung der Bartramiaceae. Unpublished Ph. D thesis. Saarbrucken: Department of Botany, University of Saarbrucken.Google Scholar
Sonesson, M., Callaghan, T. V., and Carlsson, B. Å.. 1996. Effects of enhanced ultraviolet radiation and carbon dioxide concentration on the moss Hylocomium splendens. Global Change Biology 2 (1): 6773.CrossRefGoogle Scholar
Turunen, M., Heller, W., Stich, S., Sandermann, H., and Sutinen, M. -L.. 1999. Effects of UV exclusion on phenolic compounds of young Scots pine seedlings at the subarctic. Environmental Pollution 106 (2): 225234.CrossRefGoogle ScholarPubMed
van de Staaij, J. M., Ernst, W. H. O., Hakwoort, H. W. J., and Rozema, J.. 1995. Ultraviolet-B (280–320 nm) absorbing pigments in the leaves of Silene vulgaris: their role in UV-B tolerance. Journal of Plant Physiology 147 (1): 7580.CrossRefGoogle Scholar
Vaughn, K. C., Downs, B. D., and Wilson, K. G., 1980. Ultrastructural and cytochemical studies of ‘air blisters’ in Pilea cadierei. Annals of Botany 46 (2): 221224.CrossRefGoogle Scholar
Zapp, J. 1992. Photochemische Untersuchungen an ausgewahlten Lebermoosen der Gattung Anastrophyllumsowiederbeiden Laubmoose Dicranum scopariumund Pleuroziumschreberi. Unpublished Ph. D thesis. Saarbrucken: Department of Botany, University of Saarbrucken.Google Scholar
Zinsmeister, H. D., Becker, H., and Eicher, T.. 1991. Bryophytes: a source of biologically active, naturally occurring material. Angewandte Chemie: International Edition Engl (30): 130147.Google Scholar