Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-02T07:20:54.407Z Has data issue: false hasContentIssue false

Crystal structure of silver metagermanate, Ag2GeO3

Published online by Cambridge University Press:  29 February 2012

Hirokazu Kurachi
Affiliation:
Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Tomoyuki Iwata
Affiliation:
Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
Shuxin Ouyang
Affiliation:
Photocatalytic Material Center, National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
Jinhua Ye
Affiliation:
Photocatalytic Material Center, National Institute for Materials Science (NIMS), Ibaraki 305-0047, Japan
Koichiro Fukuda*
Affiliation:
Department of Environmental and Materials Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
*
a)Author to whom correspondence should be addressed. Electronic mail: fukuda.koichiro@nitech.ac.jp

Abstract

The crystal structure of Ag2GeO3 was determined from laboratory X-ray powder diffraction data (Cu 1) using the Rietveld method. The title compound is orthorhombic with space group P212121, Z=4, unit-cell dimensions a=0.463 09(1) nm, b=0.713 93(2) nm, and c=1.040 79(3) nm, and V=0.344 10(2) nm3 . The final reliability indices were Rwp=5.58%, S=1.26, Rp=4.20%, RB=0.67% , and RF=0.35% . The GeO4 tetrahedra form infinite chains of [Ge2O6] along the a axis, with two tetrahedra per identity period of 0.463 nm. Individual chains are connected by Ag atoms, one-half of which are almost linearly coordinated by two O atoms and the rest are coordinated by three O atoms. The relatively short Ag-Ag distances of 0.299 to 0.339 nm indicate Ag(I)-Ag(I) interaction. This compound is isostructural with Ag2SiO3.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becherer, G. and Ifland, R. (1954). “Accurate determination of lattice constants of silver by the reflected-ray process,” Naturwiss. NATWAY 41, 471.10.1007/BF00628793CrossRefGoogle Scholar
Bondi, A. (1964). “van der Waals volumes and radii,” J. Phys. Chem. JPCHAX 68, 441451 .10.1021/j100785a001CrossRefGoogle Scholar
Brindley, G. W. (1949). “Quantitative X-ray analysis of crystalline substances or phases in their mixtures,” Bull. Soc. Chim. Fr. BSCFAS D59, 63.Google Scholar
Cruickshank, D. W. J., Kalman, A., and Stephens, J. S. (1978). “A reinvestigation of sodium metagermanate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B34, 13331334 .10.1107/S0567740878005488CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113 .10.1107/S002188986800508XCrossRefGoogle Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: Application of the March model,” J. Appl. Crystallogr. JACGAR 19, 267272 .10.1107/S0021889886089458CrossRefGoogle Scholar
Dong, C. (1999). “PowderX: Windows-95-based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. JACGAR 32, 838.10.1107/S0021889899003039CrossRefGoogle Scholar
Fang, J. H., Townes, W. D., and Robinson, P. D. (1969). “The crystal structure of manganese metagermanate, MnGeO3,” Z. Kristallogr. ZEKRDZ 130, 139147.CrossRefGoogle Scholar
Gelato, L. M. and Parthé, E. (1987). “STRUCTURE TIDY—A computer program to standardize crystal structure data,” J. Appl. Crystallogr. JACGAR 20, 139143 .10.1107/S0021889887086965CrossRefGoogle Scholar
Izumi, F. and Momma, T. (2007). “Three-dimensional visualization in powder diffraction,” Solid State Phenom. DDBPE8 130, 1520 .10.4028/www.scientific.net/SSP.130.15CrossRefGoogle Scholar
Jansen, M. (1977). “Silver(I)-disilicate (in German),” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 33, 35843586 .10.1107/S0567740877011571CrossRefGoogle Scholar
Jansen, M. (1980). “Silver partial structures in silver-rich oxides (in German),” J. Less-Common Met. JCOMAH 76, 285292 .10.1016/0022-5088(80)90031-4CrossRefGoogle Scholar
Jansen, M. (1982). “New silver(I) germanates (in German),” Z. Naturforsch. B ZENBAX 37, 265266.CrossRefGoogle Scholar
Jansen, M. (1987). “Homoatomic d10-d10 interactions: Their effects on structure and material properties,” Angew. Chem., Int. Ed. Engl. ACIEAY 26, 10981110 .10.1002/anie.198710981CrossRefGoogle Scholar
Jansen, M., Heidebrecht, K., Matthes, R., and Eysel, W. (1991). “Silver(I)-catena-polysilicate, crystal growth, and structure determination (in German),” Z. Anorg. Allg. Chem. ZAACAB 601, 511 .10.1002/zaac.19916010102CrossRefGoogle Scholar
Jansen, M. and Keller, H. L. (1979). “Ag10Si4O13, the first tetrasilicate (in German),” Angew. Chem. ANCEAD 91, 500.10.1002/ange.19790910612CrossRefGoogle Scholar
Jansen, M. and Linke, C. (1992a). “Ag5GeO4, the first subvalent ternary silver oxide (in German),” Z. Anorg. Allg. Chem. ZAACAB 616, 95100 .10.1002/zaac.19926161015CrossRefGoogle Scholar
Jansen, M. and Linke, C. (1992b). “Ag5GeO4, a new semiconducting oxide,” Angew. Chem., Int. Ed. Engl. ACIEAY 31, 653654 .10.1002/anie.199206531CrossRefGoogle Scholar
Jansen, M. and Standke, B. (1984). “Crystal structure of Ag2Ge2O5: A new Ge2O52− network structure (in German),” Z. Anorg. Allg. Chem. ZAACAB 510, 143151 .10.1002/zaac.19845100320CrossRefGoogle Scholar
Klein, W. and Jansen, M. (2008). “Synthesis and crystal structure of silver nesosilicate, Ag4SiO4 (in German),” Z. Anorg. Allg. Chem. ZAACAB 634, 10771081 .10.1002/zaac.200800028CrossRefGoogle Scholar
Liebau, F. (1961). “Layer silicates of the type Am(Si2O5)n. IV. The crystal structure of Ag2Si2O5 (in German),” Acta Crystallogr. ABCRE6 14, 537538 .10.1107/S0365110X61001674CrossRefGoogle Scholar
Linke, C., Hundt, R., and Jansen, M. (1995). “Preparation and crystal structure of silver orthogermanate Ag4GeO4 (in German),” Z. Kristallogr. ZEKRDZ 210, 850855.CrossRefGoogle Scholar
Linke, C. and Jansen, M. (1994). “Subvalent ternary silver oxides: Synthesis, structural characterization, and physical properties of pentasilver orthosilicate, Ag5SiO4,” Inorg. Chem. INOCAJ 33, 26142616 .10.1021/ic00090a022CrossRefGoogle Scholar
Linke, C. and Jansen, M. (1996a). “On the low temperature modifications of Ag6Si2O7 and Ag6Ge2O7—Synthesis, crystal structure, and comparison of Ag-Ag distances (in German),” Z. Anorg. Allg. Chem. ZAACAB 622, 486493 .10.1002/zaac.19966220317CrossRefGoogle Scholar
Linke, C. and Jansen, M. (1996b). “Synthesis, crystal structure, and physical properties of octasilver trigermanate, Ag8Ge3O10 (in German),” Z. Naturforsch., B: Chem. Sci. ZNBSEN 51, 15911597.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008). “VESTA: A three-dimensional visualization system for electronic and structural analysis,” J. Appl. Crystallogr. JACGAR 41, 653658 .10.1107/S0021889808012016CrossRefGoogle Scholar
Ouyang, S., Kikugawa, N., Zou, Z., and Ye, J. (2009). “Effective decolorizations and mineralizations of organic dyes over a silver germanium oxide photocatalyst under indoor-illumination irradiation,” Appl. Catal., A ACAGE4 366, 309314 .10.1016/j.apcata.2009.07.015CrossRefGoogle Scholar
Parthé, E. and Gelato, L. M. (1984). “The standardization of inorganic crystal-structure data,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 40, 169183 .10.1107/S0108767384000416CrossRefGoogle Scholar
Peacor, D. R. (1968). “The crystal structure of CoGeO3,” Z. Kristallogr. ZEKRDZ 126, 299306.CrossRefGoogle Scholar
Pugh, W. (1926). “Germanium. Part III. Salts of germanic acid,” J. Chem. Soc. JCSOA9 28282832 .10.1039/jr9262902828CrossRefGoogle Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. ABCRE6 22, 151152 .10.1107/S0365110X67000234CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065 .10.1107/S002188987901178XCrossRefGoogle Scholar
Toraya, H. (1990). “Array-type universal profile function for powder pattern fitting,” J. Appl. Crystallogr. JACGAR 23, 485491 .10.1107/S002188989000704XCrossRefGoogle Scholar
Werner, P. E., Eriksson, L., and Westdahl, M. (1985). “TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 18, 367370 .10.1107/S0021889885010512CrossRefGoogle Scholar
Wittmann, A. and Modern, E. (1965). “The zeolithic germanates Ag4Ge9O20 and Ag2Ge4O9(in German),” Monatsch. Chem. MOCMB7 96, 11541158 .10.1007/BF00904260CrossRefGoogle Scholar
Young, R. A. (1993). The Rietveld Method, edited by Young, R. A. (Oxford University Press, Oxford), pp. 138.CrossRefGoogle Scholar