Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-15T15:17:33.289Z Has data issue: false hasContentIssue false

High-resolution synchrotron X-ray powder diffraction study of bis(2-methylimidazolyl)-zinc, C8H10N4Zn (ZIF-8)

Published online by Cambridge University Press:  05 March 2012

W. Wong-Ng*
Affiliation:
Ceramics Division, NIST, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
Poly Crystallography Inc., Naperville, Illinois 60540
L. Espinal
Affiliation:
Ceramics Division, NIST, Gaithersburg, Maryland 20899
M. R. Suchomel
Affiliation:
Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
A. J. Allen
Affiliation:
Ceramics Division, NIST, Gaithersburg, Maryland 20899
H. Wu
Affiliation:
NIST Center for Neutron Research (NCNR), Gaithersburg, Maryland 20899
*
a)Author to whom correspondence should be addressed. Electronic mail: winnie.wong-ng@nist.gov

Abstract

The family of zeolitic imidazolate framework (ZIF) compounds is efficient sorbent materials that can be used for catalytic, ion exchange, gas storage, and gas separation applications. A high-resolution reference X-ray powder diffraction pattern for one of the ZIF members, bis(2-methylimidazolyl)-zinc, C8H10N4Zn (commonly known as ZIF-8), was determined using synchrotron diffraction data obtained at the Advanced Photon Source (APS) in Argonne, IL. The sample was confirmed to be cubic I-43m, with a = 17.01162(6) Å, V = 4932.08 Å3, and Z = 12. The reference X-ray powder diffraction pattern has been submitted for inclusion in the Powder Diffraction File (PDF).

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Britt, D., Tranchemontagne, D., and Yaghi, O. M. (2008). “Metal-organic frameworks with high capacity and selectivity for harmful gasses,” Proc. Natl. Acad. Sci. USA 105, 11623. 10.1073/pnas.0804900105CrossRefGoogle Scholar
Chapman, K. W., Halder, G. J., and Chupas, P. J. (2009). “Pressure-induced amorphization and porosity modification in a metal-organic framework,” J. Am. Chem. Soc. 131, 1754617547. 10.1021/ja908415zCrossRefGoogle Scholar
Dalesio, L. R., Hill, J. O., Kraimer, M., Lewis, S., Murray, D., Hunt, S., Watson, W., Clausen, M., and Dalesio, J. (1994). “The experimental physics and industrial control-system architecture-past, present, and future,” Nucl. Instrum. Methods Phys. Res. A 352, 179184. 10.1016/0168-9002(94)91493-1CrossRefGoogle Scholar
Glinka, C. J., Barker, J. G., Hammouda, B., Krueger, S., Moyer, J. J., and Orts, W. J. (1998). “The 30-m small-angle neutron scattering instruments at the National Institute of Standards and Technology,” J. Appl. Crystallogr. 31, 430445. 10.1107/S0021889897017020CrossRefGoogle Scholar
Larson, A. C. and Von Dreele, R. B. (1992). General Structure Analysis System (GSAS), Report LAUR 86-748, Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Lee, P. L., Shu, D., Ramanathan, M., Preissner, C., Wang, J., Beno, M. A., Von Dreele, R. B., Lynn, Ribaud, Kurtz, C., Antao, S. M., Jiao, X., and Toby, B. H. (2008). “A twelve-analyzer detector system for high-resolution powder diffraction,” J. Synchrotron Radiat. 15, 427432. 10.1107/S0909049508018438/ie5021sup1.pdfCrossRefGoogle ScholarPubMed
Lewis, D. W., Ruiz-Salvador, A., Gómez, A., Rodriguez-Albelo, L. M., Coudert, F.-X., Slater, B., Cheetham, A. K., and Mellot-Draznieks, C. (2009). “Zeolitic imidazole frameworks: Structural and energetic trends compared with their zeolite analogues,” Cryst. Eng. Comm. 11, 22722276. 10.1039/B912997ACrossRefGoogle Scholar
Moggach, S. A., Bennett, T. D., and Cheetham, A. K. (2009). “The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa,” Angew. Chem. 121, 72217223. 10.1002/ange.200902643CrossRefGoogle Scholar
Park, K. S., Ni, Z., Côte, A. P., Cho, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., and Yaghi, O. M. (2006). “Exceptional chemical and thermal stability of zeolite imidazolate frameworks,” Proc. Natl. Acad. Sci. USA 103, 10186. 10.1073/pnas.0602439103CrossRefGoogle Scholar
Pérez-Pellitero, J., Amrouche, H., Siperstein, F. R., Pirngruber, G., Nieto-Draghi, C., Chaplais, G., Simon-Masseron, A., Bazer-Bachi, D., Peralta, D., and Bats, N. (2010). “Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: Experiments and simulations,” Chem. Eur. J. 16, 15601571. 10.1002/chem.200902144CrossRefGoogle ScholarPubMed
Preissner, C., Shu, D., Toby, B. H., Lee, P., Wang, J., Kline, D., and Goetze, K. (2011). “The sample-changing robot for the 11-BM high-throughput powder diffraction beamline,” Nucl. Instrum. Methods Phys. Res. A (in press).Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571. 10.1107/S0021889869006558CrossRefGoogle Scholar
Standard reference materials (SRM™) are produced by National Institute of Standards SRM Office, Gaithersburg, MD 20899. For details, please contact srminfo@nist.gov.Google Scholar
Wang, B., Cote, A. P., Furukawa, H., O’Keeffe, M. J., and Yaghi, O. M. (2008a). “Colossal cages in zeolite imidazolate frameworks as selective carbon dioxide reservoirs,” Nature (London) 453, 207. 10.1038/nature06900CrossRefGoogle ScholarPubMed
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S., Kurtz, C., Ramanathan, M., Von Dreele, R. B., and Beno, M. A. (2008b). “A dedicated powder diffraction beamline at the advanced photon source: Commissioning and early operation results,” Rev. Sci. Instrum. 79, 085105. 10.1063/1.2969260CrossRefGoogle Scholar
Wu, H., Zhou, W., and Yildirim, T. (2007). “Hydrogen storage in a prototypical zeolitic imidazolate framework-8,” J. Am. Chem. Soc. 129, 53145315. 10.1021/ja0691932CrossRefGoogle Scholar