Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T14:07:41.107Z Has data issue: false hasContentIssue false

Low-temperature crystal structures of the solvent dimethyl carbonate

Published online by Cambridge University Press:  22 March 2023

Pamela S. Whitfield*
Affiliation:
Excelsus Structural Solutions (Swiss AG), Park Innovaare, Villigen, Switzerland
*
a)Author to whom correspondence should be addressed. Electronic mail: whitfieldps1@gmail.com

Abstract

Dimethyl carbonate (DMC) is an important industrial solvent but is additionally a common component of liquid lithium-ion battery electrolytes. Pure DMC has a melting point of 277 K, so encountering solidification under outdoor climatic conditions is very likely in many locations around the globe. Even eutectic, ethylene carbonate:dimethyl carbonate commercial LiPF6 salt electrolyte formulations can start to solidify at temperatures around 260 K with obvious consequences for their performance. No structures for crystalline DMC are currently available which could be a hindrance for in situ battery studies at reduced temperatures. A time-of-flight neutron powder diffraction study of the phase behavior and crystal structures of deuterated DMC was undertaken to help fill this knowledge gap. Three different orthorhombic crystalline phases were found with a previously unreported low-temperature phase transition around 50–55 K. The progression of PbcaPbcmIbam space groups follow a sequence of group–subgroup relationships with the final Ibam structure being disordered around the central carbon atom.

Type
Proceedings Paper
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bunge, H. J. 1982. Texture Analysis in Materials Science: Mathematical Methods. Oxford, Butterworth-Heinemann.Google Scholar
Coelho, A. A. 2003. “Indexing of Powder Diffraction Patterns by Iterative Use of Singular Value Decomposition.” Journal of Applied Crystallography 36 (1): 8695. doi:10.1107/S0021889802019878.CrossRefGoogle Scholar
Coelho, A. A., Evans, J., Evans, I., Kern, A., and Parsons, S.. 2011. “The TOPAS Symbolic Computation System.” Powder Diffraction 26 (S1): S225. doi:10.1154/1.3661087.CrossRefGoogle Scholar
Ding, M. S. 2004. “Liquid-Solid Phase Equilibria and Thermodynamic Modelling for Binary Organic Carbonates.” Journal of Chemical Engineering Data 49 (2): 276–82. doi:10.1021/je034134e.CrossRefGoogle Scholar
Ding, M. S., Xu, K., and Jow, T. R.. 2000. “Liquid-Solid Phase Diagrams of Binary Carbonates for Lithium Batteries.” Journal of the Electrochemical Society 147 (5): 1688–94. doi:10.1149/1.1393419.CrossRefGoogle Scholar
Ding, M. S., Xu, K., Zhang, S., and Jow, T. R.. 2001. “Liquid-Solid Phase Diagrams of Binary Carbonates for Lithium Batteries. Part II.” Journal of the Electrochemical Society 148 (4): A299304. doi:10.1149/1.1353568.CrossRefGoogle Scholar
Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongirno, M., Calandra, M., Car, R., et al. 2017. “Advanced Capabilities for Materials Modelling with Quantum ESPRESSO.” Journal of Physics: Condensed Matter 29 (46): 465901. doi:10.1088/1361-648X/aa8f79.Google ScholarPubMed
Granroth, G. E., An, K., Smith, H. L., Whitfield, P., Neuefeind, J. C., Lee, J., Zhou, W., et al. 2018. “Event-Based Processing of Neutron Scattering Data at the Spallation Neutron Source.” Journal of Applied Crystallography 51 (3): 616–29. doi:10.1107/S1600576718004727.CrossRefGoogle Scholar
Grimme, S., Antony, J., Ehrlich, S., and Krieg, H.. 2010. “A Consistent and Accurate Ab Initio Parameterization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu.” Journal of Chemical Physics 132 (15): 154104. doi:10.1063/1.3382344.CrossRefGoogle Scholar
Huq, A., Kirkham, M., Peterson, P. F., Hodges, J. P., Whitfield, P. S., Page, K., Hügle, T., et al. 2019. “POWGEN: Rebuild of a Third-Generation Powder Diffractometer at the Spallation Neutron Source.” Journal of Applied Crystallography 52 (5): 1189–201. doi:10.1107/S160057671901121X.CrossRefGoogle ScholarPubMed
Landau, L. 2008. “On the Theory of Phase Transitions.” Ukrainian Journal of Physics 53 (Special Issue): 2535. (English translation of Zh. Eksp. Teor. Fiz. (1937), 7, 19–32).Google Scholar
Rowles, M. R. 2022. “pdCIFplotter: Visualizing Powder Diffraction Data in pdCIF Format.” Journal of Applied Crystallography 55 (3): 631–7. doi:10.1107/S1600576722003478.CrossRefGoogle ScholarPubMed
Schomaker, V., and Trueblood, K. N.. 1968. “On the Rigid-Body Motion of Molecules in Crystals.” Acta Crystallographica B 24 (1): 6376. doi:10.1107/S0567740868001718.CrossRefGoogle Scholar
Steiner, T. 2002. “The Hydrogen Bond in the Solid State.” Angewandte Chemie International Edition 41 (1): 4876. doi:10.1002/1521-3773(20020104)41:1%3C48::AID-ANIE48%3E3.0.CO;2-U.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Whitfield, P. S. 2009. “Spherical Harmonics Preferential Orientation Corrections and Structure Solution from Powder Diffraction Data – A Possible Avenue of Last Resort.” Journal of Applied Crystallography 42 (1): 134–6. doi:10.1107/S0021889808041149.CrossRefGoogle Scholar
Whitfield, P. S., and Davidson, I. J.. 2010. “Low Temperature Phase Behaviour and Crystal Structures of Electrolyte Solvents And Additives” Presentation at the 15th International Meeting on Lithium Batteries, Montreal, QC, Canada, June 27–July 3, 2010.Google Scholar
Whitfield, P. S., Le Page, Y., Abouimrane, A., and Davidson, I. J.. 2008. “Ab-Initio Structure Determination of the Low Temperature Phase of Succinonitrile from Laboratory X-Ray Powder Diffraction Data – Coping With Potential Poor Powder Quality Using DFT Ab Initio Methods.” Powder Diffraction 23 (4): 292–9. doi:10.1154/1.3009635.CrossRefGoogle Scholar