Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-20T20:26:04.513Z Has data issue: false hasContentIssue false

Preparation and crystal structure of garnet-type calcium zirconium germanate Ca4ZrGe3O12

Published online by Cambridge University Press:  03 October 2016

V. D. Zhuravlev*
Affiliation:
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, 91, Pervomaiskaya Street, Ekaterinburg, GSP-145, 620990, Russia
A. P. Tyutyunnik
Affiliation:
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, 91, Pervomaiskaya Street, Ekaterinburg, GSP-145, 620990, Russia
N. I. Lobachevskaya
Affiliation:
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences, 91, Pervomaiskaya Street, Ekaterinburg, GSP-145, 620990, Russia
*
a)Author to whom correspondence should be addressed. Electronic mail: zhvd@ihim.uran.ru

Abstract

A polycrystalline sample of Ca4ZrGe3O12 was synthesized using the nitrate–citrate method and heated at 850–1100 °C. Structural refinement based on X-ray powder diffraction data showed that the crystal structure is of the garnet type with a cubic unit-cell parameter [a = 12.71299(3) Å] and the space group Ia$\bar 3$d. The structural formula is presented as Ca3[CaZr]octa[Ge]tetraO12.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blasse, G. and de Blank, J. (1995). “The luminescence of the garnet Ca4ZrGe3O12 ,” Mater. Res. Bull. 30(7), 845850.Google Scholar
Ferdov, S., Ferreira, Rute, A. S., Lin, Z., and Wu, Z. (2012). “Mild hydrothermal synthesis, crystal structure, photoluminescence properties and emission quantum yield of new zirconium germanate with garnet-type structure,” J. Solid State Chem. 190, 1823.Google Scholar
Hisanori, Y. and Tetsuya, K. (2011). “Preparation, crystal structure and photoluminescence of garnet-type calcium tin titanium aluminates,” J. Solid State Chem. 184, 965970.Google Scholar
Huang, Y-Y., Yang, J., Qui, T., Wang, J-Q., and Jin, Y-L. (2012). ” Effects of Zr-substitution on dielectric and magnetic properties of YCaVIG ferrites,” J. Magn. Magn. Mater. 324, 934938.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Malcherek, T. and Elleman-Olesen, R. (2005). “CaZrGeO5 and the triclinic instability of the titanite structure type,” Z. Kristallogr. 220(8), 712716.Google Scholar
Mateika, D., Völkel, E., and Haisma, J. (1990). “Lattice-constant-adaptable crystallographics. II. Czochralski growth from multicomponent melts of homogeneous mixed-garnet crystals,” J. Crystallogr. Growth 102(4), 9941013.Google Scholar
Rulmont, A., Tarte, P., Cartié, B., and Choisnet, J. (1993). “Solid solutions Ca3Sn2+x Si(Ge)1−x Ga2O12 (0 ≤ x ≤ 0.95) and tetrahedral coordination of Sn4+ in the garnet structure,” J. Solid State Chem. 104(2), 165176.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751767.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.CrossRefGoogle Scholar
Vorobiev, Y. (2006). Defects in Laser Crystals and Magnetic Ceramics (Ural Branch of Russian Academy of Sciences, Ekaterinburg), p. 593.Google Scholar
Supplementary material: File

Zhuravlev supplementary material

Zhuravlev supplementary material 1

Download Zhuravlev supplementary material(File)
File 333.8 KB