Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-17T01:24:32.249Z Has data issue: false hasContentIssue false

Rietveld analysis of mechanically activated BaCO3–TiO2 system

Published online by Cambridge University Press:  06 March 2012

Márcio de Sousa Góes*
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Rua Prof. Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, São Paulo, Brazil
José Arana Varela
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Rua Prof. Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, São Paulo, Brazil
Carlos de Oliveira Paiva-Santos
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Rua Prof. Francisco Degni s/n, Quitandinha, 14800-900 Araraquara, São Paulo, Brazil
Biljana D. Stojanovic
Affiliation:
Center for Multidisciplinary Studies, University of Belgrade, Belgrade, Serbia 11000
André Vitor Chaves de Andrade
Affiliation:
Departamento de Física, Universidade Estadual de Ponta Grossa, 84030-000 Ponta Grossa, Paraná, Brazil
*
a)Author to whom correspondence should be addressed; Electronic mail: marcgoes@iq.unesp.br. Tel: +55 16 33016640; Fax: +55 16 33227932.

Abstract

BaTiO3 powders were prepared through mechanical activation chemistry and analyzed by Rietveld refinement with X-ray diffraction data. Raw BaCO3 and TiO2 powders were dry milled for 5 and 20 h and then calcinated for 2 and 4 h at 800 °C. The milling process was found to have broken up the BaCO3 and TiO2 crystals into smaller crystals and formed only small amounts (<1.5 wt%) of BaTiO3. Subsequence calcinations for 2 and 4 h at 800 °C successfully produced large amounts (>97.7 wt%) of BaTiO3 crystals. The calcination process also generated microstrains and crystallite-size anisotropy in BaTiO3. An increase in the calcination time from 2 to 4 h increased the BaTiO3 weight percentage and the crystallite-shape anisotropy, but decreased the tetragonal distortion anisotropic microstrains in BaTiO3 crystals.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avvakumov, E.G. (1986). Mechanical Methods of Activation of Chemical Processes (Nauka, Novosibirsk, Russia), p. 305 (in Russian).Google Scholar
Berbenni, V., Marini, A., and Bruni, G. (2001). “Effect of mechanical milling on solid state formation of BaTiO3 from BaCO3–TiO2 (rutile) mixtures,” Thermochim. ActaTHACAS 374, 151158. tha, THACAS CrossRefGoogle Scholar
Brzozowski, E. and Castro, M.S. (2003). “Lowering the synthesis temperature of high-purity BaTiO3 powders by modifications in the processing conditions,” Thermochim. ActaTHACAS 398, 123129. tha, THACAS CrossRefGoogle Scholar
Buttner, R.H. and Maslen, E.N. (1992). “Structural parameters and electron difference density in BaTiO3,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 48, 764769. acl, ASBSDK CrossRefGoogle Scholar
Ding, J., Tsuzuki, T., and McCormick, P.G. (1996). “Ultrafine alumina particles prepared by mechanochemical/thermal processing,” J. Am. Ceram. Soc.JACTAW 79, 29562958. jac, JACTAW CrossRefGoogle Scholar
Evans, I.R., Howard, J.A. K., Sreckovic, T., and Ristic, M.M. (2003). “Variable temperature in situ X-ray diffraction study of mechanically activated synthesis of calcium titanate, CaTiO3,” Mater. Res. Bull.MRBUAC 38, 12031213. mrb, MRBUAC CrossRefGoogle Scholar
Finger, L.W., Cox, D.E., and Jephcoat, A.P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Crystallogr.JACGAR 27, 892900. acr, JACGAR CrossRefGoogle Scholar
Giri, A.K. (1997). “Nanocrystalline materials prepared through crystallization by ball milling,” Adv. Mater. (Weinheim, Ger.)ADVMEW 9, 163166. amt, ADVMEW CrossRefGoogle Scholar
Gordon, D. and Shaw, M.C. (1948). “Mechanical activation—a newly developed chemical process,” J. Appl. Mech.JAMCAV 15, 389390. jah, JAMCAV CrossRefGoogle Scholar
Junmin, X., Wang, J., and Weiseng, T. (2000). “Synthesis of lead zirconate titanate from an amorphous precursor by mechanical activation,” J. Alloys Compd.JALCEU 308, 139146. jal, JALCEU CrossRefGoogle Scholar
Larson, A.C. and Von Dreele, R.B. (2000). General Structure Analysis System (GSAS) (Report No. LAUR 86-748). Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
Parashar, S.K. S., Choudhary, R.N. P., and Murty, B.S. (2004). “Electrical properties of Gd-doped PZT nanoceramic synthesized by high-energy ball milling,” Mater. Sci. Eng., BMSBTEK 110, 5863. msb, MSBTEK CrossRefGoogle Scholar
Pavlović, V.P., Nikolić, M.V., Nikolić, Z., Branković, G., Živković, Lj., Pavlović, V.B., and Ristić, M.M. (2007). “Microstructural evolution and electric properties of mechanically activated BaTiO3 ceramics,” J. Eur. Ceram. Soc.JECSER 27, 575579. jeu, JECSER CrossRefGoogle Scholar
Phule, P.P. and Risbud, S.H. (1990). “Low-temperature synthesis and processing of electronic materials in the BaO–TiO2 system,” J. Mater. Sci.JMTSAS 25, 11691183. jmt, JMTSAS CrossRefGoogle Scholar
Rietveld, H.M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR 2, 6571. acr, JACGAR CrossRefGoogle Scholar
Ryu, S.-S. and Yoon, D.-H. (2007). “Solid-state synthesis of nano-sized BaTiO3 powder with high tetragonality,” J. Mater. Sci.JMTSAS 17, 70937099. jmt, JMTSAS CrossRefGoogle Scholar
Stephens, P.W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr.JACGAR 32, 281289. acr, JACGAR CrossRefGoogle Scholar
Stojanovic, B.D. (2003). “Mechanochemical synthesis of ceramic powders with perovskite structure,” J. Mater. Process. Technol.JMPTEF 143–144, 78–81. tef, JMPTEF Google Scholar
Stojanović, B.D., Pavlović, V.B., Pavlović, V.P., Djurić, S., Marinković, B.A., and Ristić, M.M. (1999). “Dielectric properties of barium-titanate sintered from tribophysically activated powders,” J. Eur. Ceram. Soc.JECSER 19, 10811083. jeu, JECSER CrossRefGoogle Scholar
Stojanovic, B.D., Simões, A.Z., Paiva-Santos, C.O., Jovalekic, C., Mitic, V.V., and Varela, J.A. (2005). “Mechanochemical synthesis of barium titanate,” J. Eur. Ceram. Soc.JECSER 25, 19851989. jeu, JECSER CrossRefGoogle Scholar
Thakur, O.P., Feteira, A., Kundys, B., and Sinclair, D.C. (2007). “Influence of attrition milling on the electrical properties of undoped-BaTiO3,” J. Eur. Ceram. Soc.JECSER 27, 25772589. jeu, JECSER CrossRefGoogle Scholar
Toby, H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr.JACGAR 34, 210213. acr, JACGAR CrossRefGoogle Scholar
Xue, J., Wang, J., and Wan, D. (2000). “Nanosized barium titanate powder by mechanical activation,” J. Am. Ceram. Soc.JACTAW 83, 232234. jac, JACTAW CrossRefGoogle Scholar
Young, R.A. and Desai, P. (1989). “Crystallite size and microstrain indicators in Rietveld Refinement,” Archiwum Nauki o Materialach (Arch. Mater. Sci.) 10, 71–90.Google Scholar