Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T11:45:19.644Z Has data issue: false hasContentIssue false

Structural characterization of a new form of clenbuterol, a well-known decongestant and bronchodilator also used as a performance-enhancing drug

Published online by Cambridge University Press:  16 April 2013

R. Toro
Affiliation:
Laboratorio de Cristalografía-LNDRX, Departamento de Química, Universidad de Los Andes, Mérida, Venezuela
J. Bruno-Colmenárez
Affiliation:
Unidad de Caracterización Estructural de Materiales, Instituto Zuliano de Investigaciones Tecnológicas (INZIT), La Cañada, Zulia, Venezuela
G. Díaz de Delgado
Affiliation:
Laboratorio de Cristalografía-LNDRX, Departamento de Química, Universidad de Los Andes, Mérida, Venezuela
J.M. Delgado*
Affiliation:
Laboratorio de Cristalografía-LNDRX, Departamento de Química, Universidad de Los Andes, Mérida, Venezuela
*
a)Author to whom correspondence should be addressed. Electronic mail: migueld@ula.ve

Abstract

Clenbuterol hydrochloride is an active pharmaceutical ingredient usually prescribed for treatment of respiratory diseases due to its activity as a decongestant and bronchodilator. It has also been used as a performance-enhancing drug. In the PDF-4/Organics 2012 database there are six entries related to this compound: three for its hydrochloride phase calculated using single-crystal data, two for a MeOH and a DMSO solvate of two Cu-clenbuterol complexes, and one experimental unindexed pattern. In this contribution the powder diffraction pattern and the crystal structure, determined using single crystal X-ray diffraction techniques of clenbuterol hemihydrate, C12H18Cl2N2O·0.5H2O, an unreported phase, are presented.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H. (2002). “The Cambridge structural database: a quarter of a million crystal structures and rising,” Acta Crystallogr. B Struct. Sci. 58, 380388.CrossRefGoogle ScholarPubMed
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Cui, Y. (2007). “A material science perspective of pharmaceutical solids,” Inter. J. Pharm. 339, 318.CrossRefGoogle ScholarPubMed
Etter, M. C., MacDonald, J. C., and Bernstein, J. (1990). “Graph-set analysis of hydrogen-bond patterns in organic crystals,” Acta Crystallogr. B Struct. Sci. 46, 256–62.CrossRefGoogle ScholarPubMed
Hübschle, C. B., Sheldrick, G. M., and Dittrich, B. (2011). “ShelXle: a Qt graphical user interface for SHELXL,” J. Appl. Crystallogr. 44, 12811284.CrossRefGoogle ScholarPubMed
Rodriguez-Carvajal, J. (1990). “FULLPROF: a program for Rietveld refinement and pattern matching analysis,” in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 127.Google Scholar
Sheldrick, G. M. (2008). “A short history of SHELX,” Acta Crystallogr. A Found. Crystallogr. 64, 112122.CrossRefGoogle Scholar
Sweetman, S. C. (Ed.) (2009). Martindale. The Complete Drug Reference (Pharmaceutical Press, London), 36th ed., p. 1120.Google Scholar
Zhang, G. G. Z., Law, D., Schmitt, E. A., and Qiu, Y. (2004). “Phase transformation considerations during process development and manufacture of solid oral dosage forms,” Adv. Drug Deliv. Rev. 56, 371390.CrossRefGoogle ScholarPubMed