Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-04T22:30:59.519Z Has data issue: false hasContentIssue false

A structural study of the Aurivillius phases by X-ray powder diffraction

Published online by Cambridge University Press:  01 March 2012

V. G. Vlasenko*
Affiliation:
Institute of Physics, Rostov State University, 344090 Stachki Ave. 194, Rostov-on-Don, Russia
A. T. Shuvaev
Affiliation:
Institute of Physics, Rostov State University, 344090 Stachki Ave. 194, Rostov-on-Don, Russia
D. S. Drannikov
Affiliation:
Institute of Physics, Rostov State University, 344090 Stachki Ave. 194, Rostov-on-Don, Russia
*
a)Electronic mail: vlasenko@ip.rsu.ru

Abstract

New layered bismuth oxides Bi2(BiCaNa)m−1NbmO3m+3(m=2-4) with the Aurivillius type phase were successfully synthesized. The structures of the compounds have been studied by X-ray powder diffraction and refined by the Rietveld method. Bi2.25Ca0.5Na0.25Nb2O9(m=2) has an orthorhombic crystal structure with lattice constants a=5.4478(1) Å;b=5.4770(2) Å;c=24.883(8) Å, space group A21am (No. 36). Bi2CaNaNb3O12 and Bi2.25Ca0.5Na1.25Nb3O12(m=3) are orthorhombic with Fmmm(No. 69) space group and the unit-cell parameters a=5.4473(7) Å, b=5.4770(3) Å, c=32.722(6) Å and a=5.4574(7) Å, b=5.4884 (3) Å, c=32.711(6) Å, respectively. The structure of Bi2CaNa2Nb4O15(m=4) was found to be orthorhombic with parameters a=5.4584(8) Å, b=5.4833(3) Å, c=40.534(1) Å and was refined in the space group A21am (No. 36).

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aurivillius, B. (1949a). “Mixed bismuth oxides with layer lattices. I. Structure type of CaBi2B2O9,” Ark. Kemi ARKEAD 1, 463480.Google Scholar
Aurivillius, B. (1949b). “Mixed bismuth oxides with layer lattices. II. Structure type of Bi4Ti3O12,” Ark. Kemi ARKEAD 1, 499512.Google Scholar
Aurivillius, B. (1950). “Mixed bismuth oxides with layer lattices. III. Structure type of BaBi4Ti4O15,” Ark. Kemi ARKEAD 2, 512527.Google Scholar
Blake, S. M., Falconer, M. J., McCreedy, M., and Lightfoot, P. (1997). “Cation disorder in ferroelectric Aurivillius phases of the type Bi2ANb2O9 (A=Ba, Sr, Ca),” J. Mater. Chem. JMACEP 7, 16091613.CrossRefGoogle Scholar
Borg, S., Svenssson, G., and Bovin, J.-O. (2002). “Structure study of Bi2.5Na0.5Ta 2O9 and Bi2.5Nam−1.5NbmO3m+3(m=2–4) by neutron powder diffraction and electron microscopy,” J. Solid State Chem. JSSCBI 167, 8696.CrossRefGoogle Scholar
Champarnaud-Mesjard, J.-C., Frit, B., and Watanabe, A. (1999). “Crystal structure of Bi2W2O9, the n=2 member of the homologous series (Bi2O2)BnVIO3n+1 of cation-deficient Aurivillius phases,” J. Mater. Chem. JMACEP 9, 13191322.CrossRefGoogle Scholar
De Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1999). “PowderCell for Windows,” version 2.3, Federal Institute for Materials Research and Testing, Berlin, Germany.Google Scholar
Nalini, G. and Guru Row, T. N. (2002). “Strucure determination at room temperature and phase transition studies above T C in ABi 4Ti4O15 (A=Ba, Sr and Pb),” Bull. Mater. Sci. BUMSDW 25, 275281.CrossRefGoogle Scholar
Newnham, R. E., Wolfe, R. W., and Dorrian, J. F. (1971). “Structural basis of ferroelectricity in the bismuth titanate family,” Mater. Res. Bull. MRBUAC 6, 10291039.CrossRefGoogle Scholar
Rae, A. D., Thompson, J. G., and Withers, R. L. (1992). “Structure refinement of commensurately modulated bismuth strontium tantalate, Bi2SrTa 2O9,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 48, 418428.CrossRefGoogle Scholar
Rae, A. D., Thompson, J. G., Withers, R. L. and Willis, C. A. (1990). “Structure refinement of commensurately modulated bismuth titanate, Bi4Ti3O12,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B46, 474487.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979) “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065.CrossRefGoogle Scholar
Srikanth, V., Idink, H., White, W. B., Subbarao, E. C., Rajagopal, H., and Sequeira, A. (1996). “Cation disorder in ferroelectric PbBi 2Nb2O9,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 52, 432439.CrossRefGoogle Scholar
Sugimoto, W., Shirata, M., Kuroda, K., and Sugahara, Y. (2002). “Conversion of Aurivillius phases Bi2ANaNb 3O12 (A=Sr or Ca) into the protonated forms of layered perovskite via acid treatment,” Chem. Mater. CMATEX 14, 29462952.CrossRefGoogle Scholar
Thompson, J. G., Rae, A. D., Withers, R. L. and Craig, D. C. (1991). “Revised structure of Bi3TiNbO 9,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 47, 174180.CrossRefGoogle Scholar
Withers, R. L., Thompson, J. G., and Rae, A. D. (1991). “The crystal chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO 9 and Bi2WO 6,” J. Solid State Chem. JSSCBI 94, 404417.CrossRefGoogle Scholar
Yu, W. J., Kim, Y. I., Ha, D. H., Lee, J. H., Park, Y. K., Seong, S., and Hur, N. H. (1999). “A new manganese oxide with the Aurivillius structure: Bi2Sr 2Nb2MnO12−δ,” Solid State Commun. SSCOA4 111, 705709.CrossRefGoogle Scholar