Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-19T05:41:12.076Z Has data issue: false hasContentIssue false

Structure–property relationships in fluorite-type Bi2O3–Yb2O3–PbO solid-electrolyte materials

Published online by Cambridge University Press:  21 November 2014

Nathan A. S. Webster*
Affiliation:
CSIRO Mineral Resources Flagship, Private Bag 10, Clayton South, VIC 3169, Australia
Chris D. Ling
Affiliation:
School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
Frank J. Lincoln
Affiliation:
School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
*
a)Author to whom correspondence should be addressed. Electronic mail: nathan.webster@csiro.au

Abstract

New quenched-in face-centred cubic fluorite-type materials were synthesised in the Bi2O3–Yb2O3–PbO system. After annealing in air at 500 °C for up to 200 h, each material underwent a conductivity-lowering structural transformation, thus making them unsuitable for use as solid electrolytes in solid-oxide fuel cells. For example, (BiO1.5)0.80(YbO1.5)0.17(PbO)0.03 underwent a fluorite- to Bi17Yb7O36-type orthorhombic transformation, indicative of long-range cation ordering, and (BiO1.5)0.80(YbO1.5)0.11(PbO)0.09 underwent a fluorite- to β-Bi2O3-type tetragonal transformation, indicative of long-range 〈001〉 oxide-ion vacancy ordering.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Battle, P. D., Catlow, C. R. A., and Moroney, L. M. (1987). “Structural and dynamic studies of delta-Bi2O3 oxide-ion conductors. 2. A structural comparison of (Bi2O3)1−x(Y2O3)x, (Bi2O3)1−x(Er2O3)x, (Bi2O3)1−x(Yb2O3)x,” J. Solid State Chem. 67, 4250.CrossRefGoogle Scholar
Borowska-Centkowska, A., Liu, X., Holdynski, M., Malys, M., Hull, S., Krok, F., Wrobel, W., and Abrahams, I. (2014). “Conductivity in lead substituted bismuth yttrate fluorites,” Solid State Ion. 254, 5964.CrossRefGoogle Scholar
Boyapati, S., Wachsman, E. D., and Chakoumakos, B. C. (2001a). “Neutron diffraction study of occupancy and positional order of oxygen ions in phase stabilized cubic bismuth oxides,” Solid State Ion. 138, 293304.CrossRefGoogle Scholar
Boyapati, S., Wachsman, E. D., and Jiang, N. (2001b). “Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-stabilized cubic bismuth oxides,” Solid State Ion. 140, 149160.CrossRefGoogle Scholar
Bruker, (2009). TOPAS. Version 4.2. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Blower, S. K. and Greaves, C. (1988). “The structure of beta-Bi2O3 from powder neutron diffraction data,” Acta Crystallogr. C 44, 587589.Google Scholar
Drache, M., Conflant, P., and Boivin, J. C. (1992). “Anionic conduction properties of Bi–Ca–Pb mixed oxides,” Solid State Ion. 57, 245249.CrossRefGoogle Scholar
Drache, M., Roussel, P., Wignacourt, J. P., and Conflant, P. (2004). “Bi17Yb7O36 and BiYbO3: two new compounds from the Bi2O3–Yb2O3 equilibrium phase diagram determination,” Mater. Res. Bull. 39, 13931405.CrossRefGoogle Scholar
Drache, M., Roussel, P., and Wignacourt, J.-P. (2005). “Bi17Yb7O36 and BiYbO3 crystal structures. Characterisation of thulium and lutetium homologous compounds,” Solid State Sciences 7, 269276.CrossRefGoogle Scholar
Drache, M., Roussel, P., and Wignacourt, J.-P. (2007). “Structures and oxide mobility in Bi-Ln-O materials: heritage of Bi2O3,” Chem. Rev. 107, 8096.CrossRefGoogle ScholarPubMed
Ducke, J., Trömel, M., Hohlwein, D., and Kizler, P. (1996). “Yttrium and titanium bismuthates with structures related to beta-Bi2O3,” Acta Crystallogr. C 52, 13291331.Google Scholar
Fuda, K., Kishio, K., Yamauchi, S., and Fueki, K. (1985). “O-17 NMR relaxation study of delta-Bi2O3,” Solid State Commun. 53, 8385.CrossRefGoogle Scholar
ICDD (2010). PDF-2 2010 (Database), edited by Dr. Soorya, Kabekkodu (International Centre for Diffraction Data, Newtown Square, PA, USA).Google Scholar
Jiang, N. and Wachsman, E. D. (1999). “Structural stability and conductivity of phase-stabilized cubic bismuth oxides,” J. Am. Ceram. Soc. 82, 30573064.Google Scholar
Jiang, N., Buchanan, R. M., Stevenson, D. A., Nix, W. D., Li, J.-Z., and Yang, J.-L. (1995). “Anion ordering in age stabilised bismuth oxide,” Mater. Lett. 22, 215219.CrossRefGoogle Scholar
Jiang, N., Wachsman, E. D., and Jung, S.-H. (2002). “A higher conductivity Bi2O3-based electrolyte,” Solid State Ion. 150, 347353.CrossRefGoogle Scholar
Kanatzidis, M. G. and Poeppelmeier, K. R. (2008). “Report from the third workshop on future directions of solid-state chemistry: the status of solid-state chemistry and its impact in the physical sciences,” Prog. Solid State Chem. 36, 1133.CrossRefGoogle Scholar
Krok, F., Abrahams, I., Wrobel, W., and Kozanecka-Szmigiel, A. (2006). “Oxide-ion conductors for fuel cells,” Mater. Sci. Poland 24, 1322.Google Scholar
Levin, E. M. and Roth, R. S. (1964). “Polymorphism of bismuth sequioxide. 2. Effect of oxide additions on polymorphism of Bi2O3,” J. Res. Natl. Bur. Stand. 68A, 197.CrossRefGoogle Scholar
Mairesse, G. (1993). “Bismuth-based oxide conductors: novel structural and electrical features,” in Fast Ion Transport in Solids, edited by Scrosati, B. (Kluver Academic Publishers, Dordrecht), pp. 271290.CrossRefGoogle Scholar
Mercurio, D., El Farissi, M., Frit, B., Reau, J. M., and Senegas, J. (1990). “Fast ionic-conduction in new oxide materials of the Bi2O3Ln 2O3–TeO2 systems (Ln = La, Sm, Gd, Er),” Solid State Ionics 39, 297304.CrossRefGoogle Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr. 14, 357361.CrossRefGoogle Scholar
Portefaix, N., Conflant, P., Boivin, J. C., Wignacourt, J. P., and Drache, M. (1997). “New Bi-Ln-V-O anionic conductors with delta-Bi2O3 fluorite-type structure (Ln = Y, Sm, Eu, Gd, Tb, Dy, Er, Yb),” J. Solid State Chem. 134, 219226.CrossRefGoogle Scholar
Sabine, T. M., Kennedy, B. J., Garrett, R. F., Foran, G. J., and Cookson, D. J. (1995). “The performance of the Australian powder diffractometer at the Photon Factory, Japan,” J. Appl. Crystallogr. 28, 513517.CrossRefGoogle Scholar
Sammes, N. M., Tompsett, G. A., Näfe, H., and Aldinger, F. (1999). “Bismuth based oxide electrolytes – Structure and ionic conductivity,” J. Eur. Ceram. Soc. 19, 18011826.CrossRefGoogle Scholar
Wachsman, E. D., Ball, G. R., Jiang, N., and Stevenson, D. A. (1992). “Structural and defect studies on solid oxide electrolytes,” Solid State Ion. 52, 213218.CrossRefGoogle Scholar
Wachsman, E. D., Boyapati, S., Kaufman, M. J., and Jiang, N. (2000). “Modeling of ordered structures of phase-stabilized cubic bismuth oxides,” J. Am. Ceram. Soc. 83, 19641968.CrossRefGoogle Scholar
Watanabe, A. and Sekita, M. (2005). “Stabilized delta-Bi2O3 phase in the system Bi2O3-Er2O3-WO3 and its oxide-ion conduction,” Solid State Ion. 176, 24292433.CrossRefGoogle Scholar
Webster, N. A. S. (2008). “New fluorite-type Bi2O3-based solid electrolytes: characterisation, conductivity and crystallography,” PhD Thesis, University of Western Australia.Google Scholar
Webster, N. A. S., Ling, C. D., Raston, C. L., and Lincoln, F. J. (2007). “The structure and conductivity of new fluorite-type Bi2O3–Er2O3–PbO materials,” Solid State Ion. 178, 14511457.Google Scholar
Webster, N. A. S., Ling, C. D., Raston, C. L., and Lincoln, F. J. (2008). “The structural and conductivity evolution of fluorite-type Bi2O3–Er2O3–PbO solid electrolytes during long-term annealing,” Solid State Ion., 179, 697705.CrossRefGoogle Scholar
Webster, N. A. S., Hartlieb, K. J., Saines, P. J., Ling, C. D., and Lincoln, F. J. (2011). “New quenched-in fluorite-type materials in the Bi2O3–La2O3–PbO system: synthesis and complex phase behaviour up to 750°C,” Mater. Res. Bull. 46, 538542.CrossRefGoogle Scholar
Verkerk, M. J., Van de Velde, G. M. H., Burggraaf, A. J., and Helmholdt, R. B. (1982). “Structure and ionic conductivity of Bi2O3 substituted with lanthanide oxides,” J. Phys. Chem. Solids 43, 11291136.CrossRefGoogle Scholar