Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T13:57:40.575Z Has data issue: false hasContentIssue false

X-ray reference patterns and structure of the perovskite-related phase R2Cu9Ti12O36 (R=lanthanides)

Published online by Cambridge University Press:  01 March 2012

W. Wong-Ng*
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. Suh
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
BP Chemicals, Naperville, Illinois 60566
*
a)Electronic mail: winnie.wong-ng@nist.gov

Abstract

The X-ray Rietveld refinement technique was used to determine the structure and prepare X-ray powder reference patterns for the phases R2Cu9Ti12O36 (R=Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, Yb, and Lu). R2Cu9Ti12O36 belongs to the perovskite-related [AC3](B4)O12 family of structures, which are cubic with space group Im3. The lattice parameters of the R2Cu9Ti12O36 series range from a=7.377 57(2) Å, V=401.550(3) Å3 for R=Lu to a=7.399 87(3) Å, and V=405.202(4) Å3 for R=Nd. The trend of these lattice parameters parallels the “lanthanide contraction.” In the structure, R occupies the larger icosahedral A site of the ideal ABO3 perovskite structure, while Ti occupies the distorted octahedral B site. The Jahn-Teller cation Cu occupies the C site. The twelve oxygens surrounding Cu are arranged as three mutually perpendicular rectangles of different size. The smallest and largest rectangles are nearly squares. One-third of the R site is vacant, and the chemical formula can be written as [R2∕3X1∕3Cu3](Ti4)O12, where X=vacancy. The X-ray powder patterns of R2Cu2Ti12O36 have been submitted to ICDD for inclusion in the Powder Diffraction File (PDF).

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bochu, B., Chenavas, J., Collomb, A., Deschizeaux, M. N., Fillion, G., Joubert, J. C., and Marezio, M. (1977). “Synthesis Structure Characterization and Magnetic Properties of Some New Magnetic Perovskite-like Oxides,” Physica CPHYCE6 86–88B, 929930.CrossRefGoogle Scholar
Bochu, B., Deschizeaux, M. N., Joubert, J. C., Collomb, A., Chenavas, J., and Marezio, M. (1979). “Synthès et Caracterisation d’une série de titanates pérowskites isotypes de [CaCu3](Mn4)O12,” J. Solid State Chem.JSSCBI10.1016/0022-4596(79)90235-4 29, 291298.CrossRefGoogle Scholar
Bryntse, I. and Werner, P-E. (1990). “Synthesis and Structure of a Perovskite Related Oxide, Bi2∕3Cu3Ti4O12,” Mater. Res. Bull.MRBUAC10.1016/0025-5408(90)90183-3 25, 477483.CrossRefGoogle Scholar
Chenavas, J., Joubert, J. C., Marezio, M., and Bochu, B. (1975). “The Synthesis and Crystal Structure of CaCu3Mn4O12: A New Ferromagnetic-Perovskite-like Compound,” J. Solid State Chem.JSSCBI10.1006/jssc.1998.8089 14, 2532.CrossRefGoogle Scholar
Deschizeaux, M. N., Joubert, J. C., Vegas, A., Collomb, A., Chenavas, J., and Marezio, M. (1976). “Synthesis and Crystal Structure of (ThCu3)(Mn23+Mn24+)O12, a New Ferromagnetic Perovskite-like Compound,” J. Solid State Chem.JSSCBI10.1016/0022-4596(76)90148-1 19, 4551.CrossRefGoogle Scholar
ICDD (2004). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, PA 19073–3272.Google Scholar
Larson, A. C. and von Dreele, R. B. (1992). “GSAS-General Structure Analysis system,” U.S. Government contract (W-7405-ENG-36) by the Los Alamos National Laboratory, operated by the University of California for the U.S. Department of Energy.Google Scholar
Meyer, C., Gros, Y., Bochu, B., Collomb, A., Chenavas, J., Joubert, J. C., and Marezio, M. (1978). “Synthesis, Crystal Structure, and Mossbauer Study of a Series of Perovskite-Like Compounds [ACu3](M,Fe)4O12,” Phys. Status Solidi APSSABA 48, 581586.CrossRefGoogle Scholar
Ozaki, Y., Ghedira, M., Chenavas, J., Joubert, J. C., and Marezio, M. (1977). “High-Pressure Synthesis and Bond Lengths of Calcium Copper Germanium Oxide [CaCu3](Ge4)O12,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR10.1107/S0567740877011686 B33, 36153617.CrossRefGoogle Scholar
Propach, V. Z. (1977). “Kristallstruktur von Ca0.5Cu1.5Ti2O6, Cu1.5TaTiO6 und CuTa2O6, Des spektroskopische Verhalten von Cu2+—Ionen in kuboktaedrischer Umgebung,” Z. Anorg. Allg. Chem.ZAACAB10.1002/zaac.19774350122 435, 161171.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A Profile Refinement Method for Nuclear and magnetic Structures,” J. Appl. Crystallogr.JACGAR10.1107/S0021889869006558 2, 6571.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN10.1107/S0567739476001551 A32, 751767.CrossRefGoogle Scholar
Shannon, R. D. and Prewitt, C. T. (1969). “Effective Ionic Radii in Oxides and Fluorides,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR10.1107/S0567740869003220 B25, 925946.CrossRefGoogle Scholar
Young, R. A., ed. (1995). The Rietveld Method (International Union of Crystallography Monographs on Crystallography 5) (Oxford University Press, Oxford).Google Scholar