Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T21:54:07.106Z Has data issue: false hasContentIssue false

Crystal structures and reference X-ray powder diffraction patterns of Sr4−xCaxPb2O8 (x=1,2,3)

Published online by Cambridge University Press:  10 January 2013

W. Wong-Ng
Affiliation:
Ceramics Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
Amoco Corporation, Naperville, Illinois 60566
W. Greenwood
Affiliation:
Geology Department, University of Maryland, College Park, Maryland 20742

Abstract

The crystal structure of the solid solution alkaline earth plumbate phase Sr4−xCaxPb2O8 was investigated using the X-ray Rietveld technique for x=1, 2, and 3. The lattice parameters a, b, c, and V were found to decrease linearly as the Sr at site 4h was replaced by Ca. The structure features chains of edge-sharing PbO6 octahedra, linked by seven-coordinated (Ca/Sr)–O monocapped trigonal prisms. The structure is similar to that of Pb3O4, which can be reformulated as Pb2IIPbIVO4. X-ray diffraction patterns for the solid solution members SrCa3Pb2O8, Sr2Ca2Pb2O8, and Sr3CaPb2O8 were prepared for inclusion in the Powder Diffraction File.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aksenova, T. D., Bratukhin, P. V., Shavkin, S. V., Melnkov, V. L., Antipov, E. V., Khlebova, N. E., and Shikov, A. K. (1993). “Texture Formation in Bi 2Sr 2CaCu 2O x/Ag Tapes Prepared by Partial Melt Process,” Physica C 205, 271279.Google Scholar
Balachandran, U. and Iyer, A. N., Haldar, P., Hoehn, J. G., Jr. and Motowidlo, L. R. “Progress in Development of Tapes and Magnets Made from Bi-223 Superconductors,” Proceedings of the Fourth International Conference Ad Exhibition: World Congress on Superconductivity, Vol. II, edited by K. Kristen and C. Burnham, Orlando, FL. June 27–July 1, 1994, pp. 639–649.Google Scholar
Brese, N. E., and O’Keeffe, M. (1991). “Bond-Valence Parameters for Solids,” Acta Crystallogr., Sect. B: Struct. Sci. B47, 192.CrossRefGoogle Scholar
Brown, I. D., and Altermatt, D. (1985). “Bond Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database,” Acta Crystallogr., Sect. B: Struct. Sci. B41, 244247.CrossRefGoogle Scholar
Bystrom, A., and Westgren, A. (1943). “A Study of Pb 3O 4Ark. Kem. Mineralog. Geol. Ser. B 16, 14.Google Scholar
Chen, F. H., Koo, H. S., and Tseng, T. Y. (1991). “Effect of Ca 2PbO 4 Additions to the Formation of the 110K Phase in Bi-Pb-Sr-Ca-Cu-O Superconducting Ceramics,” Appl. Phys. Lett. 58, 637639.CrossRefGoogle Scholar
Dorris, S. E., Pitz, M. A., Dawley, J. T., and Trapp, D. J. (1995). “Effect of Lead Content on Bi-2223 Formation by a Two-Powder Process,” J. Electron. Mater. 24, 832.CrossRefGoogle Scholar
Dou, S. X., Liu, H. K., Guo, Y. C., Bhasale, R., Hu, Q. Y., Babic, E., and Kusevic, I. (1994). “Effect of Silver on the Processing and Properties of Bi-2223/Ag Tapes,” Appl. Suppercond. 2, 191199.CrossRefGoogle Scholar
Goyal, A., Norton, D. P., Budai, J., Paranthaman, E. D., Specht, D. M., Kroeger, D. K., Christen, He. Q., Saffian, B., List, F. A., Lee, D. F., Matrin, P. M., Klabunde, C. E., Hatfield, E., and Sikka, V. K. (1996).Appl. Phys. Lett. 69, 1795.CrossRefGoogle Scholar
Guo, Y. C., Liu, H. K., and Dou, S. X. (1992). “Stability of High T c Phase in Ag-clad Bi-based Superconducting Wires,” Physica C 200, 147154.Google Scholar
Kesche, S., Majewski, P., and Aldinger, F. (1995). “Phase Relations and Homogeneity Region of the High Temperature Superconducting Phase (Bi, Pb)2Sr 2Ca 2Cu 3O 10+δ,J. Electron. Mater. 24, 1829.Google Scholar
Kitaguchi, H., Takada, J., Oda, K., and Miura, Y. (1990). “Equilibrium Phase Diagrams for the Systems PbO-SrO-CuO and PbO-CaO-SrO,” J. Mater. Res. 5, 1937–1402.Google Scholar
Larson, A. C., and Von Dreele, R. B. (1994). GSAS, The General Structure Analysis System, Los Alamos National Laboratory, November 1994 VMS release.Google Scholar
Luo, J. S., Merchant, N., Maroni, V. A., Gruen, D. M., Tani, B. S., Carter, W. L., Riley, G. N. Jr., and Sandhage, K. H. (1992). “Thermostability and Decomposition of the (Bi, Pb)2Sr 2Ca 2Cu 3O 10 Phase in Silver-Clad Tapes,” J. Appl. Phys. 72, 23852389.Google Scholar
Luo, J. S., Merchant, N., Maroni, V. A., Dorris, S. E., Lanagan, M. T., and Tani, B. S. (1995). “Effect of Lead Loss and Sheath Structure on Phase Formation and Alignment in (Bi, Pb)2Sr 2Ca 2Cu 3O 10+δ/Ag Composite Conductors,” J. Am. Ceram. Soc. 78, 27852789.Google Scholar
MacManus-Driscoll, J. I., and Bravman, J. C. (1994). “Effects of Silver and Lead on the Phase Stability of Bi 2Sr 2CaCu 2O 8+δ and Bi 2Sr 2Ca 2Cu 3O 10+δ above and below the Solidus Temperature,” J. Am. Ceram. Soc. 77, 23052313.CrossRefGoogle Scholar
Majewski, P., Freilinger, B., Hettich, B., Popp, T., and Schulze, K. (1991). “Phase Equilibria in the System Bi 2O 3-SrO-CaO-CuO at Temperatures of 750 °C, 800 °C and 850 °C in Air,” High Temperature Superconductors—Materials Aspects, edited by H. C. Freyhardt et al. (DGM Informations-Gesellschaft-Verlag), Garmisch-Partenkirchen, Germany, Vol. 1, p. 393.Google Scholar
Malachevsky, M. T., Yill, P. L., and Gherardi, L. (1994). “The Effect of 10 wt % Ag Addition on A Bi 1.6Pb 0.4Sr 2Ca 2Cu 3O x Compound,” Appl. Supercond. 2, 3340.CrossRefGoogle Scholar
Malozemoff, A. P., Li, Q., and Fleshler, S. (1997). “Progress in BSCCO-2223 Tape Technology” (unpublished).CrossRefGoogle Scholar
Merchant, N., Luo, J. S., Maroni, V. A., Riley, G. N., and Carter, W. L. (1994). “Reaction Induced Texture of (Bi, Pb)2Sr 2Ca 2Cu 3O 10+δ/Ag Composite Conductors,” Appl. Phys. Lett. 65, 10391041.Google Scholar
Muller, R., Cantoni, M., and Gauckler, L. J. (1995). “Phase Compatibilities in the Bi-Poor Region of the System Bi-Sr-Ca-O at 820 and 900 °C in Air,” Physica C 243, 103112.CrossRefGoogle Scholar
Paranthaman, M., Goyal, A., List, F. A., Specht, E. D., Lee, D. F., Martin, P. M., He, Q., Christen, D. K., Norton, D. P., Budai, J. D., and Kroeger, D. M. (1997). “Growth of Biaxially Textured Buffer Layers on Rolled-Ni Substrates by Electron Beam Evaporation,” Physica C 275, 266272.Google Scholar
Powder Diffraction File entry 24-1434. PDF, Powder Diffraction File, produced by International Centre for Diffraction Data, 12 Campus Blvd., Newtown Square, PA 19073-3273.Google Scholar
Reardon, B. J., and Hubbard, C. R. (1992a). “A Review of the XRD Data of the Phases Present in the CaO-SrO-PbO System,” Powder Diffr. 7, 9698.Google Scholar
Reardon, B. J., and Hubbard, C. R. (1992b). “A Review of the XRD Data of the Phases Present in the CaO-SrO-CuO System,” Powder Diffr. 7, 142.CrossRefGoogle Scholar
Sandhage, K. H., Riley, G. N. Jr., and Carter, W. (1991). “Critical Issues in the OPIT Processing of High-J c BSCCO Superconductors,” J. Metals 43, 21.Google Scholar
Sato, K., Hikata, T., Mukai, H., Ueyama, M., Shibata, N., Kato, T., Masuda, T., Nagata, M., Iwata, K., and Mitsui, T. (1993). “High-T c Silver-sheathed Bi-based Superconducting Wires,” IEEE Trans. Magn. 27, 1231.Google Scholar
Shannon, R. D. (1976). “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. A32, 751767.CrossRefGoogle Scholar
Sung, Y. S., and Hellstrom, E. E. (1995). “A Role of Ag in the Reaction Forming (Bi, Pb)2Sr 2Ca 2Cu 3O x from (Bi, Pb)2Sr 2CaCu 2O x, (Sr, Ca)2CuO 3 and CuO,” Physica C 255, 266274.CrossRefGoogle Scholar
Teichert, A., and Müller-Buschbaum, H. (1992). “Zur Kristallstruktur von Ca 2PbO 4,” Z. Anorg. Allg. Chem. 607, 128130.Google Scholar
Toledano, J. C., Morin, D., Schneck, J., Faqir, H., Monnereau, O., Vacquier, G., Strobel, P., and Barnole, V. (1995). “Stability of the 2223 Phase in the Lead-substituted Bismuth Cuprates,” Physica C 253, 5362.Google Scholar
Tromel, M. (1969). “Die Kristallstruktur der Verbindungen vom Sr 2PbO 4-Typ,” Z. Anorg. Allg. Chem. 371, 237247.CrossRefGoogle Scholar
Willis, J. O., Ray, R. D., II, Holesinger, T. G., Zhou, R., Salazar, K. V., Coulter, J. Y., Gingert, J. J., Phillips, D. S., and Peterson, D. E. (1995). “Bi-2212 and Bi-2223 Wire Development,” Proceeding of the Seventh US/Japan Workshop on High Temperature Superconductors, Tsukuba, Japan, 22–24 October 1995 (unpublished).Google Scholar
Wong-Ng, W. (1992). “The ICDD/PDF Coverage of the High T c Superconductor and Related Compounds in the A-R-Cu-O Systems (A=Ba, Sr and Ca, and R=Lanthanides and Y),” Powder Diffr. 7, 125.Google Scholar
Wong-Ng, W., and Freiman, S. W. (1994). “The Bi-Pb-Sr-Ca-Cu-O Glass Ceramics—A review,” Appl. Suppercond. 2, 163.CrossRefGoogle Scholar
Wong-Ng, W., Cook, L. P., and Jiang, F. (1997a). “Melting Equilibria of the Bi-Sr-Ca-Cu-O (BSCCO) System in Air. I. The Primary Crystallization Phase Field of ‘2212’ Phase and the Effect of Ag Addition,” J. Am. Ceram. Soc. (to be published).CrossRefGoogle Scholar
Wong-Ng, W., and Freiman, S. W. (1997b). “Superconducting Phase Formation in Bi(Pb)-Sr-Ca-Cu-O Glasses: A Review,” Chapter of a book in Superconducting Glass—Ceramics in BSCCO: Fabrication and Its Application (to be published).CrossRefGoogle Scholar
Wong-Ng, W., Cook, L. P., Jiang, F., Greenwood, W., Balachrandran, U., and Lanagan, M. (1997c). “Subsolidus Equilibria of the High T c Pb-2223 Superconductor in the (Bi,Pb)-Sr-Ca-Cu-O System at 7.5% O 2, ” J. Mater. Res. (submitted).Google Scholar
Wong-Ng, W., Cook, L. P., and Greenwood, W. (1997d). “Subsolidus and Melting Relationships of the Pb-Ca-Cu-O System,” Physica C (to be published).Google Scholar
Wong-Ng, W., Snyder, R. L., Park, C., Antipov, E., and McClune, W. F. (1997e). “ICDD Superconductor Subfile,” Powder Diffr. 12, 13.CrossRefGoogle Scholar
Wu, X. D., Foltyn, W. R., Arednt, P., Townsend, T., Adams, C., Campbell, I. H., Tiwari, P., Coulter, Y., and Peterson, D. E. (1994). “High Current YBa 2Cu 3O 7−x thick films on flexible nickel substrates with textured buffer layers,” Appl. Phys. Lett. 65, 19611963.Google Scholar
Young, R. A. (1995). The Rietveld Method, International Union of Crystallography Monograph (Oxford Science Publications, Oxford).Google Scholar
Zhou, R., Hults, W. L., Bingert, J. F., Coulter, J. Y., Peterson, E. J., and Smith, J. L. (1995). “Ag Ribbons in Bi2212 Powder-in-tube Tape,” Physica C 249, 166170.Google Scholar