Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T09:32:54.893Z Has data issue: false hasContentIssue false

Neutron powder diffraction data for low- and high-temperature NASICON phases of LiM2(PO4)3 (M=Hf, Sn)

Published online by Cambridge University Press:  10 January 2013

E. Morin
Affiliation:
Laboratoire de Cristallochimie du Solide, Université P. et M. Curie, 75252 Paris Cedex 05, France
T. Le Mercier
Affiliation:
Laboratoire de Cristallochimie du Solide, Université P. et M. Curie, 75252 Paris Cedex 05, France
M. Quarton
Affiliation:
Laboratoire de Cristallochimie du Solide, Université P. et M. Curie, 75252 Paris Cedex 05, France
E. R. Losilla
Affiliation:
Departamento de Química Inorgánica, Universidad de Málaga, Aptd 59, 29071 Málaga, Spain
M. A. G. Aranda
Affiliation:
Departamento de Química Inorgánica, Universidad de Málaga, Aptd 59, 29071 Málaga, Spain
S. Bruque
Affiliation:
Departamento de Química Inorgánica, Universidad de Málaga, Aptd 59, 29071 Málaga, Spain

Abstract

The new diffraction patterns of the low- and high-temperature phases of Li0.87Hf2.032(PO4)3 and LiSn2(PO4)3 are given and indexed on the basis of a structure refinement from neutron powder data using Rietveld method. The two isotypic compounds present a reversible phase transition: triclinic (LT, space group P1¯) ⇄ rhombohedral (HT, space group Rc) which proceeds by topotactic distortion of the structural skeleton.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alami, M., Brochu, R., Soubeyroux, J. L., Gravereau, P., Le Flem, G., and Hagenmuller, P. (1991). “Structure and thermal expansion of LiGe 2(PO 4)3,J. Solid State Chem. 90, 185193.CrossRefGoogle Scholar
Angenault, J., Couturier, J. C., Souron, J. P., Siliqi, D., and Quarton, M. (1992). “The martensitic nature of the transition monoclinic⇄rhombohedral of LiSn 2(PO 4)3,J. Mater. Sci. Lett. 11, 17051707.CrossRefGoogle Scholar
Aono, H., Sugimoto, E., Sadaoka, Y., Imanaka, N., and Adaki, G. (1993). “Electrical properties and crystal structure of solid electrolyte based on lithium hafnium phosphate LiHf 2(PO 4)3,Solid State Ionics 62, 309316.CrossRefGoogle Scholar
Boilot, J. P., Collin, G., and Colomban, P. (1988). “Relation structure-fast ion conduction in the NASICON solid solution,” J. Solid State Chem. 73, 160171.CrossRefGoogle Scholar
Delmas, C., Nadini, A., and Soubeyroux, J. L. (1988). “The NASICON-type titanium phosphates ATi 2(PO 4)3 (A=Li, Na) as electrode materials,” Solid State Ionics 28–30, 419423.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 1, 108109.CrossRefGoogle Scholar
Goodenough, J. B., Hong, H. Y. P., and Kafalas, J. A. (1976). “Fast Na +-ion transport in skeleton structures,” Mater. Res. Bull. 11, 203220.CrossRefGoogle Scholar
Hagman, L. O., and Kierkegaard, P. (1968). “The crystal structure of NaMe 2(PO 4)3; Me IV=Ge, Ti, Zr,” Acta Chem. Scand. 22, 18221832.CrossRefGoogle Scholar
Hong, H. Y-P. (1976). “Crystal Structure and Crystal Chemistry in the Na 1+xZr 2Si xP 3−xO 12,Mater. Res. Bull. 11, 173182.CrossRefGoogle Scholar
Kuwano, J., Sato, N., Kato, M., and Takano, K. (1994). “Ionic conductivity of LiM 2(PO 4)3 (M=Ti, Zr, Hf) and related compositions,” Solid State Ionics 70–71, 332336.CrossRefGoogle Scholar
Larson, A. C., and von Dreele, R. B. (1994). GSAS (Program version: PC, summer 96) Report N° LA-UR-86-748, Los Alamos National Laboratory.Google Scholar
Losilla, E. R., Aranda, M. G., Martínez-Lara, M., and Bruque, S. (1997). “Reversible triclinic-rhombohedral phase transition in LiHf 2(PO 4)3: Crystal structure from neutron powder diffraction,” Chem. Mater. 9, 16781685.CrossRefGoogle Scholar
Martínez, A., Rojo, J. M., Iglesias, J. E., Sanz, J., and Rojas, R. M. (1994). “Formation process of LiSn 2(PO 4)3, a monoclinically distorted NASICON-type structure,” Chem. Mater. 6, 17901795.CrossRefGoogle Scholar
Martínez-Juarez, A., Rojo, J. M., Iglesias, J. E., and Sanz, J. (1995). “Reversible monoclinic-rhombohedral transformation in LiSn 2(PO 4)3 with NASICON-type structure,” Chem. Mater. 7, 18571862.CrossRefGoogle Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. C. (1981). NBS*AIDS 83 is a development of “NBS*AIDS 80, A FORTRAN Program for Crystallographic Data Evaluation,” National Bureau of Standards (U.S.), Technical Note N° 1141.Google Scholar
Morin, E., Angenault, J., Couturier, J. C., Quarton, M., He, H., and Klinowski, J. (1997). “Phase transition of LiSn 2(PO 4)3,Eur. J. Solid State Inorg. Chem. 36, 947958.Google Scholar
Petit, D., Colomban, P., Collin, G., and Boilot, J. P. (1986). “Ionic mobility and phase transitions in LiZr 2(PO 4)3,Mater. Res. Bull. 21, 365371.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.CrossRefGoogle Scholar
Rodriguez-Carjaval, J. (1995). FULLPROF, Rietveld profile matching and integrated intensity refinement of X-ray and/or neutron data, Version 3.1.c, Laboratoire Léon Brillouin, CEA, Saclay, France.Google Scholar
Sanz, J., Rojo, J. M., Jimérez, R., Iglesias, J. E., and Alamo, J. (1993). “Stabilization of the rhombohedral phase in LiZr 2(PO 4)3 by thermal quenching,” Solid State Ionics 62, 287292.CrossRefGoogle Scholar
Smith, G. J., and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Sudreau, F., Petit, D., and Boilot, J. P. (1989). “Dimorphism, phase transitions and transport properties in LiZr 2(PO 4)3,J. Solid State Chem. 83, 7890.CrossRefGoogle Scholar
Wiles, D., and Young, R. (1981). “A new computer program for Rietveld analysis of X-ray powder diffraction patterns,” J. Appl. Crystallogr. 14, 149151.CrossRefGoogle Scholar
Winand, J. M., Rulmont, A., and Tarte, P. (1991). “Nouvelles solutions solides L(M IV)2−x(N IV)x(PO 4)3 (L=Li, Na; M, N=Ge, Sn, Ti, Zr, Hf). Synthèse et étude par diffraction X et conductivité ioniqué,” J. Solid State Chem. 93, 341349.CrossRefGoogle Scholar