Hostname: page-component-6d856f89d9-mhpxw Total loading time: 0 Render date: 2024-07-16T08:51:12.188Z Has data issue: false hasContentIssue false

Structural and magnetic studies of a new intermetallic compound: Er2Cu10.9Ga6.1

Published online by Cambridge University Press:  29 February 2012

B. Belgacem
Affiliation:
Unité de Recherche de Chimie des Matériaux, ISSBAT, Université de Tunis El Manar 9, Avenue Dr. Zoheir Safi, 1006-Tunis, Tunisia
R. Ben Hassen*
Affiliation:
Unité de Recherche de Chimie des Matériaux, ISSBAT, Université de Tunis El Manar 9, Avenue Dr. Zoheir Safi, 1006-Tunis, Tunisia
M. Pasturel
Affiliation:
Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
H. Noel
Affiliation:
Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, UMR CNRS 6226, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes, France
*
a)Author to whom correspondence should be addressed. Electronic mail: rached.benhassen@fss.rnu.tn

Abstract

A new ternary phase, Er2Cu10.9Ga6.1, has been found in the Er-Cu-Ga phase diagram. X-ray powder diffraction data were successfully refined based on a rhombohedral Th2Zn17 structure type (space group R-3m, No. 166) with cell parameters a=8.6627(1) Å, c=12.6824(2) Å, and Z=3. Er2Cu10.9Ga6.1 exhibits a paramagnetic Curie-Weiss behaviour down to 2 K with a trivalent character of Er atoms.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, D., Suresh, K. G., and Nigam, A. K. (2007). “Hard magnetic properties of ErCo7−xCux (0.3≤x≤1),” J. Magn. Magn. Mater.JMMMDC 309, 312316.10.1016/j.jmmm.2006.07.018CrossRefGoogle Scholar
Belgacem, B., Pasturel, M., Tougait, O., Potel, M., Roisnel, T., Ben Hassen, R., and Noël, H. (2009). “Crystal structure and magnetic properties of novel intermetallic compounds in the Er-Cu-Ga system,” J. Alloys Compd.JALCEU 478, 8995.10.1016/j.jallcom.2008.12.022Google Scholar
Bordet, P., Miraglia, S., Hodeau, J. L., and Marezio, M. (1999). “Competition between magnetism and superconductivity in erbium rhodium stannide,” J. Solid State Chem.JSSCBI 147, 399409.10.1006/jssc.1999.8405Google Scholar
Godart, C., Gupta, L. C., Nagarajan, R., Dhar, S. K., Noël, H., Potel, M., Mazumdar, C., Hossain, Z., Levy-Clement, C., Schiffmacher, G., Padalia, B. D., and Vijayaraghavan, R. (1995). “Structural, superconducting and magnetic properties of YNi2B2C and ErNi2B2C,” Phys. Rev. BPRBMDO 51, 489496.10.1103/PhysRevB.51.489Google Scholar
Gumeniuk, R. V., Stel’makhovych, B. M., and Kuz’ma, Yu. B. (2001). “The Gd-Cu-Al system,” J. Alloys Compd.JALCEU 329, 182188.10.1016/S0925-8388(01)01687-5Google Scholar
Hu, Z., Yelon, W. B., Mishra, S., Long, G. J., Pringle, O. A., Middleton, D. P., Buschow, K. H. J., and Grandjean, F. (1994). “A magnetic neutron diffraction, and Mössbauer spectral study of Nd2Fe15Ga2 and the Tb2Fe17−xGax solid solutions,” J. Appl. Phys.JAPIAU 76, 443450.10.1063/1.357094Google Scholar
Kaczorowski, D., Gofryk, K., Plackowski, T., Leithe-Jasper, A., and Grin, Yu. (2005). “Unusual feature of erbium-based Heusler phases,” J. Magn. Magn. Mater.JMMMDC 290–291, 573579.10.1016/j.jmmm.2004.11.538Google Scholar
Kraus, W. and Nolze, G. (1999). POWDERCELL, Version 2.4, Federal Institute for Materials Research and Testing, Berlin, Germany.Google Scholar
Markiv, V. Y., Shevchenko, I. P., and Belyavina, N. N. (1989). “Phase equilibria and crystalline structure of a compound in the Lu-Cu-Ga system,” Russ. Metall.RMLYAQ 2, 201206.Google Scholar
Markiv, V. Y., Shevchenko, I. P., Belyavina, N. N., and Kuzmenko, P. P. (1985). “Phase equilibria (500 °C) in the Dy-Cu-Ga system and new compounds with the BaAl4-type structure and its derivatives in the RE-Cu-Ga systems,” Dopov. Akad. Nauk. Ukr. RSR, Ser. A: Fiz.-Mat. Tekh. NaukiDNUNDU 7, 76.Google Scholar
Markiv, V. Y., Shevchenko, I. P., Belyavina, N. N., and Kuzmenko, P. P. (1986). “Crystal structure of phases in the Sm-Cu-Ga system,” Dopov. Akad. Nauk. Ukr. RSR, Ser. A: Fiz.-Mat. Tekh. NaukiDNUNDU 11, 78.Google Scholar
Moze, O., Giovanelli, L., Kockelmann, W., de Groot, C. H., de Boer, F. R., and Buschow, K. H. J. (1998). “Magnetic properties of Tb2Co17−xGax compounds studied by magnetic measurements and neutron diffraction,” J. Alloys Compd.JALCEU 264, 7681.10.1016/S0925-8388(97)00261-2CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B: Cond. MatterPHYBE3 1–2, 5569.10.1016/0921-4526(93)90108-IGoogle Scholar
Roisnel, T. and Rodríguez-Carvajal, J. (2001). “WINPLOTR: A windows tool for powder diffraction pattern analysis,” Mater. Sci. ForumMSFOEP 378–381, 118123.10.4028/www.scientific.net/MSF.378-381.118Google Scholar
Shen, B. G., Cheng, Z. H., Wang, F. W., Yan, Q. W., Tang, H., Liang, B., Zhang, S. Y., de Boer, F. R., Buschow, K. H. J., and Ridwan, S. (1998). “Effects of Ga substitution on structure and magnetocrystalline anisotropy of Tm2Fe17,” J. Appl. Phys.JAPIAU 83, 59455954.10.1063/1.367990Google Scholar
Shevchenko, I. P., Markiv, V. Y., Yarmolyuk, Y. P., Grin, Y. N., and Fedorchuk, A. O. (1989). “Phase equilibria and crystalline structure of compounds in the system Ho-Cu-Ga,” Russ. Metall.RMLYAQ 1, 219222.Google Scholar
Teatum, E., Gschneidner, K., and Waber, J. (1960). Report No. LA-2345, Los Alamos Scientific Laboratory, Los Alamos, NM.Google Scholar
Teresiak, A., Kubis, M., Mattern, N., Müller, K. -H., and Wolf, B. (2001). “Crystal structure of Sm2Fe17−yM y compounds with M=Al, Si, Ga,” J. Alloys Compd.JALCEU 319, 168173.10.1016/S0925-8388(01)00899-4Google Scholar
Yan, Q. W., Zhang, P. L., Shen, X. D., Chen, B. G., Cheng, Z. H., Gou, C., Chen, D. F., Ridwan, H., Mujamilah, M., Gunawan, M., and Marsongkohadi, P. (1996). “A high resolution neutron study of Y2Fe17−xGax (x=5,7),” J. Phys.: Condens. MatterJCOMEL 8, 14851489.10.1088/0953-8984/8/10/018Google Scholar