Hostname: page-component-7479d7b7d-8zxtt Total loading time: 0 Render date: 2024-07-13T23:52:48.875Z Has data issue: false hasContentIssue false

X-ray diffraction data of tibolone Δ4 isomer (isotibolone)

Published online by Cambridge University Press:  29 February 2012

Selma Gutierrez Antonio*
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Caixa Postal 355, 14801-970 Araraquara, SP, Brazil
Fabio Furlan Ferreira
Affiliation:
Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, 13083-970 Campinas, SP, Brazil
Gabriel Lima Barros Araujo
Affiliation:
Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
Jivaldo do Rosario Matos
Affiliation:
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes, 748, Sala 0801, 05508-900 São Paulo, SP, Brazil
Carlos de Oliveira Paiva-Santos
Affiliation:
Departamento de Físico Química, Instituto de Química, Universidade Estadual Paulista, Caixa Postal 355, 14801-970 Araraquara, SP, Brazil
*
a)Author to whom correspondence should be addressed. Electronic mail: selma_ga@yahoo.com.br

Abstract

Tibolone is used for hormone reposition of postmenopause women and isotibolone is considered the major degradation product of tibolone. Isotibolone can also be present in tibolone API raw materials due to some inadequate synthesis. Its presence is then necessary to be identified and quantified in the quality control of both API and drug products. In this work we present the indexing of an isotibolone X-ray diffraction pattern measured with synchrotron light (λ=1.2407 Å) in the transmission mode. The characterization of the isotibolone sample by IR spectroscopy, elemental analysis, and thermal analysis are also presented. The isotibolone crystallographic data are a=6.8066 Å, b=20.7350 Å, c=6.4489 Å, β=76.428°, V=884.75 Å3, and space group P21, ρo=1.187 g cm−3, Z=2.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balzar, D. and Ledbetter, H. (1993). “Voigt-function modeling in Fourier-analysis of size-broadened and strain-broadened X-ray-diffraction peaks,” J. Appl. Crystallogr.JACGAR 26, 97103.10.1107/S0021889892008987CrossRefGoogle Scholar
Boerrigter, S. X. M., van den Hoogenhof, C. J. M., Meekes, H., Verwer, P., and Bennema, P. (2002). “Pseudomorphic crystal growth of the model steroid methyl analogue of norethindrone,” J. Phys. Chem. BJPCBFK 106, 1322413230.10.1021/jp014416qCrossRefGoogle Scholar
Botez, C. E., Stephens, P. W., Nunes, C., and Suryanarayanan, R. (2003). “Crystal structure of anhydrous delta-D-mannitol,” Powder Diffr.PODIE2 18, 214218.10.1154/1.1582460CrossRefGoogle Scholar
Cheary, R. W. and Coelho, A. A. (1998a). “Axial divergence in a conventional X-ray powder diffractometer. I. Theoretical foundations,” J. Appl. Crystallogr.JACGAR 31, 851861.10.1107/S0021889898006876CrossRefGoogle Scholar
Cheary, R. W. and Coelho, A. A. (1998b). “Axial divergence in a conventional X-ray powder diffractometer. II. Realization and evaluation in a fundamental-parameter profile fitting procedure,” J. Appl. Crystallogr.JACGAR 31, 862868.10.1107/S0021889898006888CrossRefGoogle Scholar
Coelho, A. A. (2003). “Indexing of powder diffraction patterns by iterative use of singular value decomposition,” J. Appl. Crystallogr.JACGAR 36, 8695.10.1107/S0021889802019878CrossRefGoogle Scholar
Coelho, A. A. (2007). TOPAS ACADEMIC (computer software) (Coelho Software, Brisbane, Australia).Google Scholar
Dong, W., Gilmore, C., Barr, G., Dallman, C., Feeder, N., and Terry, S. (2008). “A quick method for the quantitative analysis of mixtures. 1. Powder X-ray diffraction,” J. Pharm. Sci.JPMSAE 97, 22602276.10.1002/jps.21142CrossRefGoogle ScholarPubMed
Ferreira, F. F., Granado, E., Carvalho, W., Kycia, S. W., Bruno, D., and Droppa, R. (2006). “X-ray powder diffraction beamline at D10B of LNLS: Application to the Ba2FeReO6 double perovskite,” J. Synchrotron Radiat.JSYRES 13, 4653.10.1107/S0909049505039208CrossRefGoogle Scholar
Iyengar, S. S., Phadnis, N. V., and Suryanarayanan, R. (2001). “Quantitative analyses of complex pharmaceutical mixtures by the Rietveld method,” Powder Diffr.PODIE2 16, 2024.10.1154/1.1332076CrossRefGoogle Scholar
Kirchholtes, P. H. G. M., Sas, G. A. J. M. T., Kirchholtes, P. H. G., Sas, G. A. J. M., Gerard, M. K. P., Theresia, S. G. A. J., and Theresia, S. G. A. J. M. (2000). High purity composition comprising (7-alpha,17alpha)-17-hydroxy-7-methyl-19-nor-17-pregn-5(10)-en-20-yn-3-one, pp. 1121375–A1121371. AKZO NOBEL NV (ALKU) KIRCHHOLTES P H G M (KIRC-Individual) SAS G A J M T (SASG-Individual) ORGANON NV (ORGA) GERARD M K P H (GERA-Individual) THERESIA S G A J M (THER-Individual).Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS∗AIDS80: A FORTRAN program for crystallographic data evaluation (NBS∗AIDS83 is an expanded version of NBS∗AIDS80.). Natl. Bur. Stand. Tech. (U.S.) Note No. 1141.Google Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr.JACGAR 14, 357361.10.1107/S0021889881009618CrossRefGoogle Scholar
Scarlett, N. V. Y. and Madsen, I. C. (2006). “Quantification of phases with partial or no known crystal structures,” Powder Diffr.PODIE2 21, 278284.10.1154/1.2362855CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,” J. Appl. Crystallogr.JACGAR 20, 7983.10.1107/S0021889887087090CrossRefGoogle Scholar
Van Engelgem, T. and Marechal, J. (2005). Pharmaceutical Composition Comprising Cyclodextrin Complex of Tibolone (Pharmaceutical Services Inc., Kraanlei, Gent, BE) (PSI N.V.), p. 16; Zentiva a.s.Google Scholar