Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-06-07T22:16:10.983Z Has data issue: false hasContentIssue false

High-Flow Nasal Cannula versus Bag Valve Mask for Preoxygenation during Rapid Sequence Intubation in the Emergency Department: A Single-Center, Prospective, Randomized Controlled Trial

Published online by Cambridge University Press:  18 December 2023

Muhammed Fatih Cırıl*
Affiliation:
Sancaktepe Sehit Prof Ilhan Varank Education and Research Hospital, Department of Emergency Medicine, Istanbul, Turkey
Mustafa Akarca
Affiliation:
Tokat Erbaa State Hospital Emergency Department, Tokat, Turkey
Ebru Unal Akoglu
Affiliation:
Fatih Sultan Mehmet Education and Research Hospital, Department of Emergency Medicine, Istanbul, Turkey
Tuba Cimilli Ozturk
Affiliation:
Fatih Sultan Mehmet Education and Research Hospital, Department of Emergency Medicine, Istanbul, Turkey
Özge Onur
Affiliation:
Marmara University School of Medicine, Istanbul, Turkey
*
Correspondence: Muhammed Fatih Cırıl, MD Specialist of Emergency Medicine Sancaktepe Sehit Prof Ilhan Varank Education and Research Hospital Department of Emergency Medicine Istanbul, Turkey 34785 E-mail: fthcrl@gmail.com

Abstract

Objective:

Hypoxia is a frequently reported complication during the intubation procedure in the emergency department (ED) and may cause bad outcomes. Therefore, oxygenation plays an important role in emergency airway management. The efficacy of oxygenation with high-flow nasal cannula (HFNC) in the ED has been studied, though the evidence is limited. The study aim was to compare two methods of preoxygenation in patients undergoing rapid sequence intubation (RSI) in the ED: (1) HFNC and (2) bag-valve mask (BVM) oxygenation.

Methods:

This is a single-center, prospective, randomized controlled trial (RCT) in adult ED patients requiring RSI. Patients were randomized to receive preoxygenation with either HFNC or BVM. While HFNC therapy was continued during the intubation procedure, BVM oxygenation was interrupted for laryngoscopy. The primary outcome was the lowest peripheral oxygen saturation (SpO2) level during intubation. Secondary outcomes were incidence of desaturation (SpO2<90%) and severe hypoxemia (SpO2<80%) throughout the procedure, intubation time, rate of failed intubation, and 30-day survival rates.

Results:

A total of 135 patients were randomized into two groups (HFNC n = 68; BVM n = 67). The median lowest SpO2 value measured during intubation was 96% (88.8%-99.0%) in the HFNC group and 92% (86.0%-97.5%) in the BVM group (P = .161). During the intubation procedure, severe hypoxemia occurred in 13.2% (n = 9) of patients in the HFNC group and 8.9% (n = 6) in the BVM group, while mild hypoxemia was observed in 35.8% (n = 24) of the BVM group and 26.5% (n = 18) of the HFNC group. However, there was no statistically significant difference between the groups in terms of hypoxemia development (P = .429 and P = .241, respectively). No significant difference was reported in the rate of failed intubation between the groups. Thirty-day mortality was observed in 73.1% of the BVM group and 57.4% of the HFNC group, with a borderline statistically significant difference (difference 15.7; 95% CI of the difference: −0.4 to 30.7; P = .054).

Conclusion:

The use of HFNC for preoxygenation, when compared to standard care with BVM oxygenation, did not improve the lowest SpO2 levels during intubation. Also, the use of HFNC during intubation did not provide benefits in reducing the incidence of severe hypoxemia. However, the 30-day survival rates were slightly better in the HFNC group compared to the BVM group.

Type
Original Research
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of World Association for Disaster and Emergency Medicine

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jishnu, M, Bhoi, S, Sahu, AK, Suresh, S, Aggarwal, P. Airway management practices among emergency physicians: an observational study. Turk J Emerg Med. 2022;22(4):186191.Google ScholarPubMed
Mitsuyama, Y, Nakao, S, Shimazaki, J, Ogura, H, Shimazu, T. Effectiveness of high-flow nasal cannula for tracheal intubation in the emergency department. BMC Emerg Med. 2022;22(1):17.CrossRefGoogle ScholarPubMed
Caputo, N, Azan, B, Domingues, R, et al. Emergency department use of apneic oxygenation versus usual care during rapid sequence intubation: a randomized controlled trial (the ENDAO trial). Acad Emerg Med. 2017;24(11):13871394.CrossRefGoogle ScholarPubMed
Weingart, SD, Levitan, RM. Preoxygenation and prevention of desaturation during emergency airway management. Ann Emerg Med. 2012;59(3):165175.CrossRefGoogle ScholarPubMed
Gulen, M, Satar, S, Yesiloglu, O, Avci, A, Acehan, S. High-flow nasal cannula oxygen therapy in the management of acute respiratory distress syndrome secondary to opioid overdose. Turk J Emerg Med. 2021;21(1):3033 CrossRefGoogle ScholarPubMed
Spoletini, G, Alotaibi, M, Blasi, F, Hill, NS. Heated humidified high-flow nasal oxygen in adults. Chest. 2015;148(1):253261.CrossRefGoogle ScholarPubMed
Ejiofor, BD, Carroll, RW, Bortcosh, W, Kacmarek, RM. PEEP generated by high-flow nasal cannula in a pediatric model. Resp Care. 2019;64(10):12401249.CrossRefGoogle Scholar
Ang, KS, Green, A, Ramaswamy, KK, Frerk, C. Preoxygenation using the Optiflow system. Br J Anesth. 2017;118(3):463464.CrossRefGoogle ScholarPubMed
Raineri, SM, Cortegiani, A, Accurso, G, et al. Efficacy and safety of using high-flow nasal oxygenation in patients undergoing rapid sequence intubation. Turk J Anesthesiol Reanim. 2017;45(6):335.CrossRefGoogle ScholarPubMed
Fong, KM, Au, SY, Ng, GWY. Preoxygenation before intubation in adult patients with acute hypoxemic respiratory failure: a network meta-analysis of randomized trials. Crit Care. 2019;23(1):112.CrossRefGoogle ScholarPubMed
Russotto, V, Cortegiani, A, Raineri, SM, Gregoretti, C, Giarratano, A. Respiratory support techniques to avoid desaturation in critically ill patients requiring endotracheal intubation: a systematic review and meta-analysis. J Crit Care. 2017;41:98106.CrossRefGoogle ScholarPubMed
Baillard, C, Fosse, JP, Sebbane, M, et al. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Resp Crit Care Med. 2006;174(2):171177.CrossRefGoogle ScholarPubMed
Mort, TC. Preoxygenation in critically ill patients requiring emergency tracheal intubation. Crit Care Med. 2005;33(11):26722675.CrossRefGoogle ScholarPubMed
Robinson, A, Ercole, A. Evaluation of the self-inflating bag-valve-mask and non-rebreather mask as preoxygenation devices in volunteers. BMJ Open. 2012;2(5):e001785.CrossRefGoogle ScholarPubMed
Vourc’h, M, Asfar, P, Volteau, C, et al. High-flow nasal cannula oxygen during endotracheal intubation in hypoxemic patients: a randomized controlled clinical trial. Intensive Care Med. 2015;41:15381548.CrossRefGoogle ScholarPubMed
Guitton, C, Ehrmann, S, Volteau, C, et al. Nasal high-flow preoxygenation for endotracheal intubation in the critically ill patient: a randomized clinical trial. Intensive Care Med. 2019;45:447458.CrossRefGoogle ScholarPubMed
Semler, MW, Janz, DR, Lentz, RJ, et al. Randomized trial of apneic oxygenation during endotracheal intubation of the critically ill. Am J Resp Crit Care Med. 2016;193(3):273280.CrossRefGoogle ScholarPubMed
Simon, M, Wachs, C, Braune, S, de Heer, G, Frings, D, Kluge, S. High-flow nasal cannula versus bag-valve-mask for preoxygenation before intubation in subjects with hypoxemic respiratory failure. Respir Care. 2016;61(9):11601167.CrossRefGoogle ScholarPubMed
Song J li, Sun Y, Shi Y bo, Liu X ying, Su Z bo. Comparison of the effectiveness of high-flow nasal oxygen vs. standard facemask oxygenation for pre- and apneic oxygenation during anesthesia induction: a systematic review and meta-analysis. BMC Anesth. 2022;22(1):100.CrossRefGoogle Scholar
Chua, MT, Khan, FA, Ng, WM, et al. Pre-and apneic high flow oxygenation for rapid sequence intubation in the emergency department (Pre-AeRATE): study protocol for a multicenter, randomized controlled trial. Trials. 2019;20:19.CrossRefGoogle Scholar
Bright, MR, Harley, WA, Velli, G, Zahir, SF, Eley, V. High-flow nasal cannula for apneic oxygenation in obese patients for elective surgery: a systematic review and meta-analysis. Anesth Analg. 2023;136(3):483493.CrossRefGoogle ScholarPubMed
Rosén, J, Frykholm, P, Fors, D. High-flow nasal cannula versus face mask for preoxygenation in obese patients: a randomized controlled trial. Acta Anaesth Scand. 2021;65(10):13811389.CrossRefGoogle Scholar
Semler, MW, Janz, DR, Russell, DW, et al. A multicenter, randomized trial of ramped position vs sniffing position during endotracheal intubation of critically ill adults. Chest. 2017;152(4):712722.CrossRefGoogle ScholarPubMed
Jaber, S, Monnin, M, Girard, M, et al. Apneic oxygenation via high-flow nasal cannula oxygen combined with non-invasive ventilation preoxygenation for intubation in hypoxemic patients in the intensive care unit: the single-center, blinded, randomized controlled OPTINIV trial. Intensive Care Med. 2016;42:18771887.CrossRefGoogle Scholar