Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T14:07:06.615Z Has data issue: false hasContentIssue false

CIRCULARITY OF PLASTICS THROUGH ECODESIGN: THE CASE OF FRENCH WEEE

Published online by Cambridge University Press:  19 June 2023

Nicolas Nève*
Affiliation:
Arts et Métiers Institute of Technology, University of Bordeaux, CNRS, Bordeaux INP, I2M Bordeaux, F-33400 Talence, France;
Carole Charbuillet
Affiliation:
Arts et Métiers Institute of Technology Chambéry, University of Bordeaux, CNRS, Bordeaux INP, I2M Bordeaux, F- 33400 Talence, France;
Stéphane Pompidou
Affiliation:
University of Bordeaux, CNRS, Arts et Métiers Institute of Technology, Bordeaux INP, I2M Bordeaux, F-33400 Talence, France
Nicolas Perry
Affiliation:
Arts et Métiers Institute of Technology Chambéry, University of Bordeaux, CNRS, Bordeaux INP, I2M Bordeaux, F- 33400 Talence, France;
*
Nève, Nicolas Laurent ENSAM, France, nicolas.neve@ensam.eu

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While innovation in waste treatment processes continue to advance, plastics are still often put aside in comparison to other materials. It is especially the case for WEEE-plastics: as they are included in complex equipment, their recovery is disregarded, in aid of critical metals and rare earths. The recycling of plastics is hindered by the low re-integration rate of these materials, due to concerns around their quality and their availability. Ecodesign of EEE thus seems to be a robust solution. This paper details two approaches to assess product design, by respectively evaluating the product recyclability and the implementation of predefined ecodesign guidelines. Based on these methods, the construction of a quality standard for recycled plastics in France is presented. The definition of the quality includes mechanical properties, but chemical, logistics, and regulatory aspects are also at stake. Eventually, ecodesign indexes and indicators are selected, and a method for their formal construction is proposed. The goal of this study is to provide ways to assess the overall quality and usability of recycled plastics, along with design for circularity methods to integrate them in new manufactured products.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
The Author(s), 2023. Published by Cambridge University Press

References

AFNOR, 2012. IEC/TR 62635:2012 - Octobre 2012 [WWW Document]. URL https://www.boutique.afnor.org/norme/iec-tr-626352012/-/article/805943/xs124796 (accessed 6.24.21).Google Scholar
Andersen, T., 2021. A comparative study of national variations of the European WEEE directive: manufacturer's view. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-13206-zCrossRefGoogle Scholar
Buekens, A., Yang, J., 2014. Recycling of WEEE plastics: a review. J. Mater. Cycles Waste Manag. 16, 415434. https://doi.org/10.1007/s10163-014-0241-2CrossRefGoogle Scholar
CEN/CLC/TC, 2019. EN 45555:2019 - General methods for assessing the recyclability and recoverability of energy-related products, ICS 13.020.20.Google Scholar
Code de l'environnement, 2017. R. 543-196 et R. 543-197 du code de l'environnement (société ESR) - Légifrance [WWW Document]. URL https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000036048848 (accessed 11.30.22).Google Scholar
De Aguiar, J., De Oliveira, L., Da Silva, Oliveira, Bond, J., Kovacs Scalice, D., Becker, R., D., 2017. A design tool to diagnose product recyclability during product design phase. J. Clean. Prod. 141, 219229. https://doi.org/10.1016/j.jclepro.2016.09.074CrossRefGoogle Scholar
De los Rios, I.C., Charnley, F.J.S., 2017. Skills and capabilities for a sustainable and circular economy: The changing role of design. J. Clean. Prod., Multinational Enterprises’ strategic dynamics and climate change: drivers, barriers and impacts of necessary organisational change 160, 109122. https://doi.org/10.1016/j.jclepro.2016.10.130Google Scholar
Dostatni, E., Diakun, J., Grajewski, D., Wichniarek, R., Karwasz, A., 2016. Multi-agent system to support decision-making process in design for recycling. Soft Comput. 20, 43474361. https://doi.org/10.1007/s00500-016-2302-zCrossRefGoogle Scholar
Dwek, M., 2017. Integration of material circularity in product design (Thesis). Université Grenoble Alpes, France.Google Scholar
EU Parliament, 2011. DIRECTIVE 2011/65/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, L_2011174.Google Scholar
EuPC, PCE, 2019. The Usage of Recycled Plastics Materials by Plastics Converters in Europe (Survey No. 2nd edition). Polymer Comply Europe, Europe.Google Scholar
Fangeat, E., DEPROUW, A., JOVER, M., BORIE, M., TONSART, O., 2020. ADEME - Rapport annuel du registre des déchets d’équipements électriques et électroniques. ADEME, France.Google Scholar
Gaines, L., 2012. To recycle, or not to recycle, that is the question: Insights from life-cycle analysis. MRS Bull. 37, 333338. https://doi.org/10.1557/mrs.2012.40CrossRefGoogle Scholar
Grimaud, G., 2019. Conception des scénarios de recyclage pilotée par l’évaluation des performances des procédés (Text). ENSAM, Bordeaux.Google Scholar
Horta Arduin, R., 2020. From waste management to supplier of secondary raw materials: development of indicators to support WEEE chain management - focus on the French system (Text). ENSAM, France.Google Scholar
Horta, R., Grimaud, G., Martinez-Leal, J., Perry, N., Laratte, B., Pompidou, S., Alix, T., Charbuillet, C., 2019. Influence of scope definition in recycling rate calculation for European e-waste extended producer responsibility. Waste Manag. 84, 256268. https://doi.org/10.1016/j.wasman.2018.12.002CrossRefGoogle Scholar
Hultgren, N., 2012. Guidelines and Design Strategies for Improved Product Recyclability (Text). Chalmers University of Technology, Sweden.Google Scholar
Kaliyavaradhan, S.K., Prem, P.R., Ambily, P.S., Mo, K.H., 2022. Effective utilization of e-waste plastics and glasses in construction products - a review and future research directions. Resour. Conserv. Recycl. 176, 105936. https://doi.org/10.1016/j.resconrec.2021.105936CrossRefGoogle Scholar
Martinez-Leal, J., 2019. Développement d'outils d'aide à la décision en conception pilotés par l'analyse multicritère de la valorisabilité du produit et l'outillage des lignes directrices d’écoconception pour la fin de vie (Text). ENSAM, Bordeaux.Google Scholar
Nève, N., 2022. RPM technical sheets (Software No. 8). Chaire Mines Urbaines, France.Google Scholar
Peters, H.A.R., Toxopeus, M.E., Jauregui-Becker, J.M., Dirksen, M.-O., 2012. Prioritizing ‘Design for Recyclability’ Guidelines, Bridging the Gap between Recyclers and Product Developers, in: Dornfeld, D.A., Linke, B.S. (Eds.), Leveraging Technology for a Sustainable World. Springer, Berlin, Heidelberg, pp. 203208. https://doi.org/10.1007/978-3-642-29069-5_35CrossRefGoogle Scholar
Plastics Europe, 2020. Plastics-the Facts 2020.Google Scholar
Ragaert, K., Delva, L., Van Geem, K., 2017. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 69, 2458. https://doi.org/10.1016/j.wasman.2017.07.044CrossRefGoogle ScholarPubMed
Moreno, Rodriguez, del C, P.., 2016. Intégration de considérations environnementales dans la phase conceptuelle du processus de conception de nouveaux produits (Texte). Université de Troyes, Troyes.Google Scholar
Schwarz, A., Godoi Bizarro, D., Ligthart, T.N., De Wild, P., Vreugdenhil, B., Van Harmelen, T., 2021. Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Manag. 121, 331342. https://doi.org/10.1016/j.wasman.2020.12.020CrossRefGoogle Scholar