Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T17:17:01.038Z Has data issue: false hasContentIssue false

On the fractional powers of a Schrödinger operator with a Hardy-type potential

Published online by Cambridge University Press:  12 April 2024

Giovanni Siclari*
Affiliation:
Dipartimento di Matematica e Applicazioni, Università degli Studi di Milano – Bicocca, Milano, Italy (g.siclari2@campus.unimib.it)

Abstract

Strong unique continuation properties and a classification of the asymptotic profiles are established for the fractional powers of a Schrödinger operator with a Hardy-type potential, by means of an Almgren monotonicity formula combined with a blow-up analysis.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on Behalf of The Edinburgh Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abatangelo, N. and Dupaigne, L., Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann. Inst. H. Poincaré C Anal. Non Linéaire 34(2): (2017), 439467.CrossRefGoogle Scholar
Abdellaoui, B., Medina, M., Peral, I. and Primo, A., The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian, J. Differential Equations 260(11): (2016), 81608206.CrossRefGoogle Scholar
Badiale, M. and Tarantello, G., A Sobolev–Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Ration. Mech. Anal. 163(4): (2002), 259293.CrossRefGoogle Scholar
Bogdan, K., Grzywny, T., Jakubowski, T. and Pilarczyk, D., Fractional Laplacian with Hardy potential, Comm. Partial Differential Equations 44(1): (2019), 2050.CrossRefGoogle Scholar
Brasco, L., Lindgren, E. and Parini, E., The fractional Cheeger problem, Interfaces Free Bound. 16(3): (2014), 419458.CrossRefGoogle Scholar
Cabré, X. and Tan, J., Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224(5): (2010), 20522093.CrossRefGoogle Scholar
Caffarelli, L. A. and Stinga, P. R., Fractional elliptic equations, Caccioppoli estimates and regularity, Ann. Inst. H. Poincaré C Anal. Non Linéaire 33(3): (2016), 767807.Google Scholar
Capella, A., Dávila, J., Dupaigne, L. and Sire, Y., Regularity of radial extremal solutions for some non-local semilinear equations, Comm. Partial Differential Equations 36(8): (2011), 13531384.CrossRefGoogle Scholar
Chua, S. -K., Extension theorems on weighted Sobolev spaces and some applications, Canad. J. Math. 58(3): (2006), 492528.CrossRefGoogle Scholar
De Luca, A., Felli, V. and Siclari, G., Strong unique continuation from the boundary for the spectral fractional laplacian, ESAIM Control Optim. Calc. Var. 29: (2023) .Google Scholar
De Luca, A., Felli, V. and Vita, S., Strong unique continuation and local asymptotics at the boundary for fractional elliptic equations, Adv. Math. 400(10): (2022), .CrossRefGoogle Scholar
Fall, M. M., Semilinear elliptic equations for the fractional Laplacian with Hardy potential, Nonlinear Anal. 193(11): (2020), .CrossRefGoogle Scholar
Fall, M. M. and Felli, V., Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Partial Differential Equations 39(2): (2014), 354397.CrossRefGoogle Scholar
Fall, M. M. and Weth, T., Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263(8): (2012), 22052227.CrossRefGoogle Scholar
Felli, V., Ferrero, A. and Terracini, S., Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential, J. Eur. Math. Soc. (JEMS) 13(1): (2011), 119174.CrossRefGoogle Scholar
Felli, V., Ferrero, A. and Terracini, S., On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials, Discrete Contin. Dyn. Syst. 32(11): (2012), 38953956.CrossRefGoogle Scholar
Felli, V., Ferrero, A. and Terracini, S., On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials, Discrete Contin. Dyn. Syst. 32(11): (2012), 38953956.CrossRefGoogle Scholar
Felli, V., Mukherjee, D. and Ognibene, R., On fractional multi-singular Schrödinger operators: positivity and localization of binding, J. Funct. Anal. 278(108389): (2020), .CrossRefGoogle Scholar
Felli, V. and Siclari, G., Sobolev-type regularity and Pohozaev-type identities for some degenerate and singular problems, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 33(3): (2022), 553574.Google Scholar
Frank, R. L., Merz, K. and Siedentop, H., Equivalence of Sobolev norms involving generalized Hardy operators, Int. Math. Res. Not. IMRN 3(1): (2021), 22842303.CrossRefGoogle Scholar
Hardy, G. H., Littlewood, J. E. and Pólya, G., Inequalities., 2nd ed., (University Press, Cambridge, 1952).Google Scholar
Herbst, I. W., Spectral theory of the operator $(p^2+m^2)^1/2-Ze^2/r$, Commun. Math. Phys. 53(3): (1977), 285294.CrossRefGoogle Scholar
Kufner, A., Weighted Sobolev spaces. A Wiley-Interscience Publication, (John Wiley & Sons, Inc, New York, 1985); translated from the Czech.Google Scholar
Lieb, E. H., The stability of matter: from atoms to stars, Bull. Amer. Math. Soc. (N.S.) 22(1): (1990), 149.CrossRefGoogle Scholar
Lions, J. -L. and Magenes, E., Non-homogeneous boundary value problems and applications. Die Grundlehren der Mathematischen Wissenschaften, Band 181., Volume I, (Springer-Verlag, New York-Heidelberg, 1972); translated from the French by P. Kenneth.Google Scholar
Lischke, A., Pang, G., Gulian, M., et al. What is the fractional Laplacian? A comparative review with new results, J. Comput. Phys. 404(1): (2020), .CrossRefGoogle Scholar
Maz’ja, V. G., Sobolev spaces. Springer Series in Soviet Mathematics, (Springer-Verlag, Berlin, 1985); translated from the Russian by T. O. Shaposhnikova.Google Scholar
Opic, B. and Kufner, A., Hardy-type inequalities. Pitman Research Notes in Mathematics Series, Volume 219, (Longman Scientific & Technical, Harlow, 1990).Google Scholar
Rudin, W., Functional analysis. McGraw-Hill Series in Higher Mathematics, (McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973).Google Scholar
Secchi, S., Smets, D. and Willem, M., Remarks on a Hardy-Sobolev inequality, C. R. Math. Acad. Sci. Paris 336(10): (2003), 811815.CrossRefGoogle Scholar
Stinga, P. R. and Torrea, J. L., Extension problem and Harnack’s inequality for some fractional operators, Commun. Partial Differential Equations 35(11): (2010), 20922122.CrossRefGoogle Scholar
Tao, X. and Zhang, S., Weighted doubling properties and unique continuation theorems for the degenerate Schrödinger equations with singular potentials, J. Math. Anal. Appl. 339(1): (2008), 7084.CrossRefGoogle Scholar
Tartar, L., An introduction to Sobolev spaces and interpolation spaces. Lecture Notes of the Unione Matematica Italiana, Volume 3, (Springer, Berlin; UMI, Bologna, 2007).Google Scholar
Wolff, T. H., A property of measures in RN and an application to unique continuation, Geom. Funct. Anal. 2(2): (1992), 225284.CrossRefGoogle Scholar