Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-08T18:49:37.770Z Has data issue: false hasContentIssue false

The Homotopy Type of a Poincaré Duality Complex After Looping

Published online by Cambridge University Press:  10 June 2015

Piotr Beben
Affiliation:
School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK (p.d.beben@soton.ac.uk)
Jie Wu
Affiliation:
Department of Mathematics, National University of Singapore, Block S17 (SOC1), 10 Lower Kent Ridge Road, Singapore 119076 (matwuj@nus.edu.sg)

Abstract

We answer a weaker version of the classification problem for the homotopy types of (n — 2)-connected closed orientable (2n — 1)-manifolds. Let n ≥ 6 be an even integer and let X be an (n — 2)-connected finite orientable Poincaré (2n — 1)-complex such that Hn-1 (X;ℚ) = 0 and Hn-1 (X;2) = 0. Then its loop space homotopy type is uniquely determined by the action of higher Bockstein operations on Hn-1 (X; ℤp) for each odd prime p. A stronger result is obtained when localized at odd primes.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Anick, D. J., Homotopy exponents for spaces of category two, in Algebraic topology: Proc. Int. Conf. Arcata, CA, July 27-August 2, 1986, Lecture Notes in Mathematics, Volume 1370, pp. 2452 (Springer, 1989).Google Scholar
2.Barratt, M. G., Spaces of finite characteristic, Q. J. Math. 11 (1960), 124136.Google Scholar
3.Bubenik, P., Free and semi-inert cell attachments, Trans. Am. Math. Soc. 357(11 (2005), 45334553.CrossRefGoogle Scholar
4.Cohen, F. R., Moore, J. C. and Neisendorfer, J. A., The double suspension and exponents of the homotopy groups of spheres, Annals Math. (2) 110(3 (1979), 549565.CrossRefGoogle Scholar
5.Félix, Y. and Thomas, J. C., Effet d’un attachement cellulaire dans l’homologie de l’espace des lacets, Annales Inst. Fourier 39(1 (1989), 207224 (in French).CrossRefGoogle Scholar
6.Grbić, J. and Wu, J., Applications of combinatorial groups to Hopf invariant and the exponent problem, Alg. Geom. Topology 6 (2006), 22292255.Google Scholar
7.Halperin, S. and Lemaire, J.-M., Suites inertes dans les algèbres de Lie graduèes (‘Autopsie d’un meurtre, II’), Math. Scand. 61(1 (1987), 3967 (in French).Google Scholar
8.Halperin, S. and Lemaire, J.-M., The fibre of a cell attachment, Proc. Edinb. Math. Soc. 38(2 (1995), 295311.CrossRefGoogle Scholar
9.Hess, K. and Lemaire, J.-M., Nice and lazy cell attachments, J. Pure Appl. Alg. 112(1 (1996), 2939.Google Scholar
10.Klein, J. R., Poincaré duality spaces, in Surveys on surgery theory, Volume 1, Annals of Mathematics Studies, Volume 145, pp. 135165 (Princeton University Press, Princeton, NJ, 2000).Google Scholar
11.Lemaire, J.-M., ‘Autopsie d’un meurtre’ dans l’homologie d’une algèbre de chaînes, Annales Scient. Éc. Norm. Sup. 11(1 (1978), 93100 (in French).Google Scholar
12.Milnor, J., On simply connected 4-manifolds, in International symposium on algebraic topology, pp. 122128 (Universidad Nacional Autónoma de Mèxico y UNESCO, Mexico City, 1958).Google Scholar
13.Mimura, M., Nishida, G. and Toda, H., Localization of CW-complexes and its applications, J. Math. Soc. Jpn 23 (1971), 593624.CrossRefGoogle Scholar
14.Sasao, S. and Takahashi, H., Highly connected Poincaré complexes, Kōdai Math. J. 2(2 (1979), 139147.Google Scholar
15.Stöcker, R., On the structure of 5-dimensional Poincaré duality spaces, Comment. Math. Helv. 57(3 (1982), 481510.Google Scholar
16.Sullivan, D. P., Genetics of homotopy theory and the Adams conjecture, Annals Math. (2) 100 (1974), 179.CrossRefGoogle Scholar
17.Wall, C. T. C., Classification of (n - 1)-connected 2n-manifolds, Annals Math. (2) 75 (1962), 163189.CrossRefGoogle Scholar