Hostname: page-component-84b7d79bbc-7nlkj Total loading time: 0 Render date: 2024-07-29T10:52:18.915Z Has data issue: false hasContentIssue false

On equinormal quasi-metrics

Published online by Cambridge University Press:  20 January 2009

Salvador Romaguera
Affiliation:
Departamento de Mathemáticas, ETSICCP, Universidad Politécnica, 46071, Valencia, Spain
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout this paper all spaces are T1 and N will denote the set of all positive integer numbers.

A quasi-metric on a set X is a non-negative real-valued function d on X × X such that, for all x, y, zX, (i) d(x, y) = 0 if, and only if, x = ysemicolon (ii) d(x, y)≦d(x, z) + d(z, y).

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1989

References

REFERENCES

1.Fletcher, P. and Lindgren, W. F., Quasi-Uniform Spaces (Marcel Dekker, New York, 1982).Google Scholar
2.R. Fox, A short proof of the Junnila quasi-metrization theorem, Proc. Amer. Math. Soc. 83 (1981), 663664.Google Scholar
3.Hodel, R. E., Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253263.CrossRefGoogle Scholar
4.Junnila, H. J. K., Neighbornets, Pacific J. Math. 76 (1978), 83108.CrossRefGoogle Scholar
5.Kelley, J. L., General Topology (Springer-Verlag, New York. 1955).Google Scholar
6.Kofner, J., Closed mappings and quasi-metrics, Proc. Amer. Math. Soc. 80 (1980), 333336.Google Scholar
7.Kofner, J., Transitivity and ortho-bases, Canad. J. Math. 33 (1981), 14391447.CrossRefGoogle Scholar
8.Kunzi, H. P., On strongly quasi-metrizable spaces, Arch. Math. (Basel) 41 (1983), 5763.CrossRefGoogle Scholar
9.Lindgren, W. F. and Fletcher, P., Equinormal quasi-uniformities and quasi-metrics, Glasnik Mat. 13 (1978), 111125.Google Scholar
10.Martjn-Alustiza, J. A. and Romaguera, S., Pseudo-open mappings on D1 spaces, Topology conference (Proceedings X Jornadas Hispano-Lusas de matematicas. Univ. Murcia 1985), 6671 (Spanish).Google Scholar
11.Mrowka, S. G., On normal metrics, Amer. Math. Monthly 72 (1965), 9981001.CrossRefGoogle Scholar
12.Rainwater, J., Spaces whose finest uniformity is metric, Pacific J. Math. 9 (1959), 567570.CrossRefGoogle Scholar
13.Stoltenberg, R. A., On quasi-metric spaces, Duke Math. J. 36 (1969), 6572.CrossRefGoogle Scholar