Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-29T11:36:10.619Z Has data issue: false hasContentIssue false

Entrainment in 3D hydrodynamics simulations of neon burning

Published online by Cambridge University Press:  29 August 2024

F. Rizzuti*
Affiliation:
Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, UK
R. Hirschi
Affiliation:
Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele ST5 5BG, UK Kavli IPMU (WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8583, Japan
C. Georgy
Affiliation:
Geneva Observatory, Geneva University, CH-1290 Sauverny, Switzerland
W. D. Arnett
Affiliation:
Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson AZ 85721, USA
C. Meakin
Affiliation:
Pasadena Consulting Group, 1075 N Mar Vista Ave, Pasadena, CA 91104 USA
A. StJ. Murphy
Affiliation:
School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UK

Abstract

Our knowledge of massive star evolution is limited by uncertainties linked with multi-dimensional processes taking place in stellar interiors. Important examples are convective boundary mixing (CBM) and entrainment, which are implemented in 1D stellar evolution models assuming simplified prescriptions. 3D hydrodynamics models can improve these prescriptions by studying realistic multi-D processes for a short timerange (minutes or hours). In these proceedings, we present results coming from a new set of high-resolution hydrodynamics simulations of a neon-burning shell in a massive star, and discuss how the entrainment law can be calibrated from 3D models and then used to improve 1D stellar evolution prescriptions.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Böhm-Vitense, E., 1958, Zeitschrift für Astrophysik, 46, 108Google Scholar
Cristini, A., Hirschi, R., Meakin, C., Arnett, D., Georgy, C., Walkington, I., 2019, MNRAS, 484, 4645 Google Scholar
Eggenberger, P., Meynet, G., Maeder, A., Hirschi, R., Charbonnel, C., Talon, S., Ekström, S., 2008, AP&SS, 316, 43 Google Scholar
Fernando, H. J. S., 1991, Annual Review of Fluid Mechanics, 23, 455 Google Scholar
Gilet, C., Almgren, A. S., Bell, J. B., Nonaka, A., Woosley, S. E., Zingale, M., 2013, ApJ, 773, 137 CrossRefGoogle Scholar
Horst, L., Hirschi, R., Edelmann, P. V. F., Andrássy, R., Röpke, F. K., 2021, A&A, 653, A55 Google Scholar
Maeder, A., 1976, A&A, 47, 389 Google Scholar
Meakin, C. A., Arnett, D., 2007, ApJ, 667, 448 CrossRefGoogle Scholar
Mocák, M., Müller, E., Weiss, A., Kifonidis, K., 2009, A&A, 501, 659 Google Scholar
Rizzuti, F., Hirschi, R., Georgy, C., Arnett, W. D., Meakin, C., StJ. Murphy A., 2022, arXiv e-prints, p. arXiv:2207.03223Google Scholar
Scott, L. J. A., Hirschi, R., Georgy, C., Arnett, W. D., Meakin, C., Kaiser, E. A., Ekström, S., Yusof, N., 2021, MNRAS, 503, 4208CrossRefGoogle Scholar
Staritsin, E. I., 2013, Astronomy Reports, 57, 380 CrossRefGoogle Scholar
Viallet, M., Meakin, C., Arnett, D., Mocák, M., 2013, ApJ, 769, 1 CrossRefGoogle Scholar
Zahn, J. P., 1991, A&A, 252, 179 Google Scholar