Hostname: page-component-5c6d5d7d68-ckgrl Total loading time: 0 Render date: 2024-08-29T16:35:44.805Z Has data issue: false hasContentIssue false

Evolution and final fate of massive post-common-envelope binaries

Published online by Cambridge University Press:  29 August 2024

Dandan Wei*
Affiliation:
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
Fabian R. N. Schneider
Affiliation:
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany Zentrum für Astronomie der Universität Heidelberg, Heidelberg, Germany
Philipp Podsiadlowski
Affiliation:
University of Oxford, St Edmund Hall, Oxford, OX1 4AR, United Kingdom
Eva Laplace
Affiliation:
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
Jan Henneco
Affiliation:
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany
Friedrich K. Röpke
Affiliation:
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany Zentrum für Astronomie der Universität Heidelberg, Heidelberg, Germany
Marco Vetter
Affiliation:
Heidelberger Institut für Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg, Germany

Abstract

Mergers of neutron stars and black holes are nowadays observed routinely thanks to gravitational-wave astronomy. In the isolated, binary-evolution channel, a common-envelope phase of a red supergiant and a compact object is crucial to sufficiently shrink the orbit and thereby enable a merger via gravitational-wave emission. Here, we use the outcome of three-dimensional hydrodynamic common-envelope simulations of a 9.4 solar mass red supergiant and a 5 solar mass black-hole to explore the further evolution and final fate of the remnant binary. The binary system undergoes another phase of mass transfer during which it is visible as an X-ray binary. We find that the donor star does not explode as an ultra-stripped supernova because of the large remaining envelope mass, but as a Type Ib/c supernova. Supernova kicks are actually required to sufficiently perturb the orbit and thus facilitate a merger within a Hubble time via gravitational-wave emission.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moreno, M. M., Schneider, F. R. N., Roepke, F. K., Ohlmann, S. T., Pakmor, R., Podsiadlowski, P., & Sand, C. 2022, A&A in printGoogle Scholar
Paxton, B., et al. 2018, ApJS, 234, 34 Google Scholar