Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-29T16:32:19.356Z Has data issue: false hasContentIssue false

Fundamental Properties of O and B Stars with Optical Interferometry

Published online by Cambridge University Press:  29 August 2024

Kathryn D. Gordon*
Affiliation:
University of Tampa 401 W. Kennedy Blvd., Tampa, FL, USA
Douglas R. Gies*
Affiliation:
Georgia State University CHARA, Department of Physics and Astronomy, Atlanta, GA, USA
Gail H. Schaefer*
Affiliation:
The CHARA Array Mount Wilson, CA, USA

Abstract

We used interferometric observations made with the CHARA Array of 25 B-type stars and 6 O-type stars to obtain precise measurements of angular size, radius, and effective temperature to test stellar atmospheric models for massive stars. Our measured angular diameters range from 1.09 milli-arcseconds (mas) for β Tau down to 0.11 mas for 10 Lac, the smallest star yet resolved with the CHARA Array. The rotational oblateness of the rapidly rotating star ζ Oph is directly measured for the first time. We collected ultraviolet to infrared spectrophotometry for all sample stars and derived temperatures, angular diameters, and reddening estimates that best fit the spectra. There is generally good agreement between the observed and spectral fit angular diameters for the O and B stars, indicating that the fluxes predicted from model atmospheres are reliable. The derived and model temperatures for the O stars are also in fair agreement, however the sample size is small and several of the O stars results we consider to be preliminary. On the other hand, the temperatures derived from angular diameters and fluxes tend to be larger (by ≈ 4%) for the B stars than those from published results based on analysis of the line spectrum (Gordon et al. 2018, 2019).

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyajian, T. S. et al. 2008, ApJ, 683, 424 Google Scholar
Castelli, F., & Kurucz, R. L. 2004, ArXiv Astrophysics e-printsGoogle Scholar
Choi, J., Dotter, A., Conroy, C., Cantiello, M., Paxton, B., & Johnson, B. D. 2016, ApJ, 823, 102 CrossRefGoogle Scholar
Dotter, A. 2016, ApJS, 222, 8 Google Scholar
Collaboration, Gaia et al. 2018, A&A, 616, A1 Google Scholar
Gordon, K. D., Gies, D. R., Schaefer, G. H., Huber, D., & Ireland, M. 2019, ApJ, 873, 91 CrossRefGoogle Scholar
Gordon, K. D., Gies, D. R., Schaefer, G. H., Huber, D., Ireland, M., & Hillier, D. J. 2018, ApJ, 869, 37 Google Scholar
Hillier, D. J., & Miller, D. L. 1998, ApJ, 496, 407 Google Scholar
Howarth, I. D., & Smith, K. C. 2001, MNRAS, 327, 353 Google Scholar
Hubeny, I., & Lanz, T. 1995, ApJ, 439, 875 Google Scholar
Ireland, M. J. et al. 2008, in Proc. SPIE, Vol. 7013, Optical and Infrared Interferometry, 701324Google Scholar
Kraus, M. et al. 2015, A&A, 581, A75 Google Scholar
Kurucz, R. L. 1992, in IAU Symposium, Vol. 149, The Stellar Populations of Galaxies, ed. Barbuy, B. & Renzini, A., 225Google Scholar
Lanz, T., & Hubeny, I. 2003, ApJS, 146, 417 Google Scholar
Lanz, T., & Hubeny, I. 2007, ApJS, 169, 83 Google Scholar
Paxton, B. et al. 2013, ApJS, 208, 4 Google Scholar
Poeckert, R., Bastien, P., & Landstreet, J. D. 1979, AJ, 84, 812 Google Scholar
Santolaya-Rey, A. E., Puls, J., & Herrero, A. 1997, A&A, 323, 488 Google Scholar
Simón-Daz, S., Herrero, A., Sabn-Sanjulián, C., Najarro, F., Garcia, M., Puls, J., Castro, N., & Evans, C. J. 2014, A&A, 570, L6 Google Scholar
ten Brummelaar, T. A. et al. 2005, ApJ, 628, 453 Google Scholar
ten Brummelaar, T. A. 2013, Journal of Astronomical Instrumentation, 2, 1340004 Google Scholar
van Leeuwen, F. 2007, A&A, 474, 653 Google Scholar