Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-23T08:21:33.570Z Has data issue: false hasContentIssue false

The interplay of internal and external processes in the buildup of disk galaxies: thick-disk star formation histories in AURIGA simulations

Published online by Cambridge University Press:  09 June 2023

Francesca Pinna
Affiliation:
Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg, Germany email: pinna@mpia.de
Daniel Walo-Martín
Affiliation:
Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, Av. del Astrofísico Francisco Sánchez s/n, E-38206, La Laguna, Tenerife, Spain
Robert J.J. Grand
Affiliation:
Instituto de Astrofísica de Canarias, Calle Vía Láctea s/n, E-38205 La Laguna, Tenerife, Spain Departamento de Astrofísica, Universidad de La Laguna, Av. del Astrofísico Francisco Sánchez s/n, E-38206, La Laguna, Tenerife, Spain

Abstract

Recent integral-field spectroscopy observations have revealed that thick- and thin-disk star-formation histories are regulated by the interplay of internal and external processes. We analyze stellar-population properties of 24 spiral galaxies from the AURIGA zoom-in cosmological simulations, to offer a more in-depth interpretation of observable properties. We present edge-on maps of stellar age, metallicity and [Mg/Fe] abundance, and we extract the star-formation and chemical-evolution histories of thin and thick disks. Both show signs of the interplay between internal chemical enrichment and gas and star accretion. Thick disks show particularly complex stellar populations, including an in-situ component, formed from both slowly enriched and accreted more pristine gas, and an additional significant fraction of ex-situ stars.

Type
Contributed Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., & Eke, V. R., 2003, ApJ, 597, 21.10.1086/378316CrossRefGoogle Scholar
Brook, C. B., Kawata, D., Gibson, B. K., & Freeman, K. C., 2004, ApJ, 612, 894.10.1086/422709CrossRefGoogle Scholar
Di Matteo, P., Lehnert, M. D., Qu, Y., & van Driel, W., 2011, A&A, 525, L3.Google Scholar
Comerón, S., Salo, H., Knapen, J. H., 2018, A&A, 610, A5.Google Scholar
Comerón, S., Salo, H., Knapen, J. H., & Peletier, R. F., 2019, A&A, 623, A89.Google Scholar
Gallart, C., Bernard, E. J., Brook, C. B., Ruiz-Lara, T., Cassisi, S., Hill, V., & Monelli, M., 2019, Nature Astronomy, 3, 932.10.1038/s41550-019-0829-5CrossRefGoogle Scholar
Grand, R. J. J., et al., 2017, MNRAS, 467, 179.Google Scholar
Kasparova, A. V., Katkov, I. Y., Chilingarian, I. V., Silchenko, O. K., Moiseev, A. V., & Borisov, S. B., 2016, MNRAS, 460, L89.10.1093/mnrasl/slw083CrossRefGoogle Scholar
Martig, M., et al., 2021, MNRAS, 508, 2458.10.1093/mnras/stab2729CrossRefGoogle Scholar
Pinna, F., et al., 2019, A&A, 623, A19.Google Scholar
Pinna, F., et al., 2019, A&A, 625, A95.Google Scholar
Yoachim, P., & Dalcanton, J. J., 2008, ApJ, 683, 707.10.1086/590246CrossRefGoogle Scholar