Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-29T16:34:24.286Z Has data issue: false hasContentIssue false

Quantitative spectroscopy of mid B-type supergiants

Published online by Cambridge University Press:  29 August 2024

David Weßmayer*
Affiliation:
Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstr. 25/8, 6020 Innsbruck, Austria
Norbert Przybilla
Affiliation:
Institut für Astro- und Teilchenphysik, Universität Innsbruck, Technikerstr. 25/8, 6020 Innsbruck, Austria
Keith Butler
Affiliation:
LMU München, Universitätssternwarte, Scheinerstr. 1, 81679 München, Germany

Abstract

B-type supergiants show enormous potential as resourceful tools to address a wide range of astrophysical questions concerning stellar atmospheres, stellar and galactic evolution and the cosmic distance scale. For the purposes of a comprehensive analysis of these objects we test a hybrid non-LTE approach – line-blanketed model atmospheres computed under the assumptions of local thermodynamic equilibrium (LTE) in combination with non-LTE line-formation calculations. An observational sample of 14 Galactic B-type supergiants with masses below about 30 Mȯ is investigated on the basis of high-resolution Echelle spectra. The results of this analysis – atmospheric and fundamental stellar parameters, the characterisation of the interstellar sightlines to the objects, as well as derived spectroscopic distances and multi-species abundances – are subjected to multiple tests of consistency.

Type
Poster Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Butler, K., & Giddings, J. R. 1985, Newsletter of Analysis of Astronomical Spectra, 9 (Univ. London)Google Scholar
Ekström, S., Georgy, C., Eggenberger, P., et al. 20212 A&A], 537, A146 Google Scholar
Georgy, C., Ekström, S., Granada, A., et al. 2013, A&A, 553, A24 Google Scholar
Giddings, J. R. 1981, PhD thesis (Univ. London)Google Scholar
Kudritzki, R. P., Castro, N., Urbaneja, M. A., et al. 2016, ApJ, 829, 70 CrossRefGoogle Scholar
Kurucz, R. 2005, Mem. Societa Astronomica Italiana Suppl., 8, 14 Google Scholar
Maeder, A. & Meynet, G. 2012, Rev. Mod. Phys., 84, 25 CrossRefGoogle Scholar
Maeder, A., Przybilla, N., Nieva, M. F., et al. 2014, A&A, 565, A39 Google Scholar
Nieva, M. F., & Przybilla, N. 2012, A&A, 539, A143 Google Scholar
Przybilla, N., Butler, K., Becker, S. R., & Kudritzki, R. P. 2006, A&A, 445, 1099 Google Scholar
Przybilla, N., Firnstein, M., Nieva, M. F., Meynet, G., & Maeder, A. 2010, A&A, 517, A38 Google Scholar
Supplementary material: PDF

Weßmayer et al. supplementary material

Weßmayer et al. supplementary material

Download Weßmayer et al. supplementary material(PDF)
PDF 1 MB