Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-29T07:15:04.119Z Has data issue: false hasContentIssue false

Chemical abundances of multiple stellar populations in massive globular clusters

Published online by Cambridge University Press:  31 March 2017

Anna F. Marino*
Affiliation:
Research School of Astronomy & Astrophysics, Australian National University, Mt Stromlo Observatory, via Cotter Rd, Weston, ACT 2611, Australia email: anna.marino@anu.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multiple stellar populations in the Milky Way globular clusters manifest themselves with a large variety. Although chemical abundance variations in light elements, including He, are ubiquitous, the amount of these variations is different in different globulars. Stellar populations with distinct Fe, C+N+O and slow-neutron capture elements have been now detected in some globular clusters, whose number will likely increase. All these chemical features correspond to specific photometric patterns. I review the chemical+photometric features of the multiple stellar populations in globular clusters and discuss how the interpretation of data is being more and more challenging. Very excitingly, the origin and evolution of globular clusters is being a complex puzzle to compose.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Bastian, N., Lamers, H. J. G. L. M., de Mink, S. E., et al. 2013, MNRAS, 436, 2398 CrossRefGoogle Scholar
Bekki, K. & Freeman, K. C. 2003, MNRAS, 346, L11 CrossRefGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., et al. 2009, A&A, 505, 117 Google Scholar
Carretta, E., Lucatello, S., Gratton, R. G., Bragaglia, A. & D'Orazi, V. 2011, A&A, 533, A69 Google Scholar
Carretta, E. 2015, ApJ, 810, 148 CrossRefGoogle Scholar
Cassisi, S., Salaris, M., Pietrinferni, A., et al. 2008, ApJ, 672, L115 CrossRefGoogle Scholar
Da Costa, G. S., Held, E. V., Saviane, I., & Gullieuszik, M. 2009, ApJ, 705, 1481 CrossRefGoogle Scholar
Da Costa, G. S. & Marino, A. F. 2011, PASA, 28, 28 CrossRefGoogle Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007, A&A, 464, 1029 Google Scholar
Denissenkov, P. A., VandenBerg, D. A., Hartwick, F. D. A. et al. 2015, MNRAS, 448, 3314 CrossRefGoogle Scholar
D'Ercole, A., Vesperini, E., D'Antona, F., McMillan, S. L. W., & Recchi, S. 2008, MNRAS, 391, 825 CrossRefGoogle Scholar
Dupree, A. K. & Avrett, E. H. 2013, ApJ, 773, L28 CrossRefGoogle Scholar
Ferraro, F. R., Beccari, G., Dalessandro, E., et al. 2009, Nature, 462, 1028 CrossRefGoogle Scholar
Gratton, R. G., Villanova, S., Lucatello, S., et al. 2012, A&A, 544, A12 Google Scholar
Johnson, C. I., Rich, R. M., Pilachowski, C. A., et al. 2015, AJ, 150, 63 CrossRefGoogle Scholar
Lind, K., Bergemann, M., & Asplund, M. 2012, MNRAS, 427, 50 CrossRefGoogle Scholar
Marino, A. F., Villanova, S., Piotto, G., et al. 2008, A&A, 490, 625 Google Scholar
Marino, A. F., Milone, A. P., Piotto, G., et al. 2009, A&A, 505, 1099 Google Scholar
Marino, A. F., Sneden, C., Kraft, R. P., et al. 2011a, A&A, 532, A8 Google Scholar
Marino, A. F., Milone, A. P., Piotto, G., et al. 2011b, ApJ, 731, 64 CrossRefGoogle Scholar
Marino, A. F., Milone, A. P., Sneden, C., et al. 2012a, A&A, 541, A15 Google Scholar
Marino, A. F., Milone, A. P., Piotto, G., et al. 2012b, ApJ, 746, 14 CrossRefGoogle Scholar
Marino, A. F., Milone, A. P., Przybilla, N., et al. 2014, MNRAS, 437, 1609 CrossRefGoogle Scholar
Marino, A. F., Milone, A. P., Yong, D., et al. 2014b, MNRAS, 442, 3044 CrossRefGoogle Scholar
Marino, A. F., Milone, A. P., Karakas, A. I., et al. 2015, MNRAS, 450, 815 CrossRefGoogle Scholar
Marino, A. F., et al. 2015, in prep.Google Scholar
Milone, A. P., Bedin, L. R., Piotto, G., et al. 2008, ApJ, 673, 241 CrossRefGoogle Scholar
Milone, A. P., Piotto, G., Bedin, L. R., et al. 2012, ApJ, 744, 58 CrossRefGoogle Scholar
Milone, A. P. 2015, MNRAS, 446, 1672 CrossRefGoogle Scholar
Milone, A. P., Marino, A. F., Piotto, G., et al. 2015, ApJ, 808, 51 CrossRefGoogle Scholar
Mucciarelli, A., Lapenna, E., Massari, D., et al. 2015, ApJ, 809, 128 CrossRefGoogle Scholar
Norris, J. E. & Da Costa, G. S. 1995, ApJ, 447, 680 CrossRefGoogle Scholar
Norris, J. E. 2004, ApJ, 612, L25 CrossRefGoogle Scholar
Pasquini, L., Mauas, P., Käufl, H. U., & Cacciari, C. 2011, A&A, 531, A35 Google Scholar
Pietrinferni, A., Cassisi, S., Salaris, M., & Castelli, F. 2006, ApJ, 642, 797 CrossRefGoogle Scholar
Piotto, G., Villanova, S., Bedin, L. R., et al. 2005, ApJ, 621, 777 CrossRefGoogle Scholar
Piotto, G., Milone, A. P., Anderson, J., et al. 2012, ApJ, 760, 39 CrossRefGoogle Scholar
Piotto, G., Milone, A. P., Bedin, L. R., et al. 2015, AJ, 149, 91 CrossRefGoogle Scholar
Renzini, A., et al. 2015, accepted for publ. in MNRAS Google Scholar
Shingles, L. J., Karakas, A. I., Hirschi, R., et al. 2014, ApJ, 795, 34 CrossRefGoogle Scholar
Smith, V. V., Suntzeff, N. B., Cunha, K., et al. 2000, AJ, 119, 1239 CrossRefGoogle Scholar
Sneden, C., Kraft, R. P., Guhathakurta, P., Peterson, R. C., & Fulbright, J. P. 2004, AJ, 127, 2162 CrossRefGoogle Scholar
Straniero, O., Cristallo, S., & Piersanti, L. 2014, ApJ, 785, 77 CrossRefGoogle Scholar
Yong, D. & Grundahl, F. 2008, ApJ, 672, L29 CrossRefGoogle Scholar
Yong, D., Grundahl, F., Lambert, D. L., Nissen, P. E., & Shetrone, M. D. 2003, A&A, 402, 985 Google Scholar
Yong, D., Roederer, I. U., Grundahl, F., et al. 2014, MNRAS, 441, 3396 CrossRefGoogle Scholar
Yong, D., Grundahl, F., & Norris, J. E. 2015, MNRAS, 446, 3319 CrossRefGoogle Scholar