Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T18:32:03.058Z Has data issue: false hasContentIssue false

Conference summary: triggered star formation in a turbulent ISM

Published online by Cambridge University Press:  01 August 2006

Bruce G. Elmegreen*
Affiliation:
IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Hts., NY 10598USA email: bge@us.ibm.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While the overall star formation rate in a galaxy appears to depend primarily on the gas mass and density, with the timescale for conversion of gas into stars given by the dynamical time, turbulence and explosions are still important for the process of star formation because they control the birth correlations in space and time. Most star formation appears triggered by some specific process, whether it is a galactic spiral shock, the expansion of a superbubble, the compression of a bright-rimmed globule, or some seemingly random compressive event in a supersonically turbulent flow. These processes give space and time sequences for star birth that are well observed. Many examples were given at this conference. Shocks are the link between large-scale but weak galactic processes and small-scale but strong final collapses. The rate limiting step is on the largest scale, where the dynamical time is slowest. Both gravitational instabilities and pressurized triggering seem to work on the same local dynamical time, making it difficult to tell that star formation is highly triggered when observing only galactic scales.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Baade, W. 1963, in: Payne-Gaposchkin, C. (eds.), The Evolution of Stars and Galaxies (Cambridge: Harvard University Press), Chapter 16CrossRefGoogle Scholar
Bertin, G. & Lodato, G. 2001, A&A 370, 342Google Scholar
Blaauw, A. 1952, BAN 11, 405Google Scholar
Blaauw, A. 1964, ARAA 2, 213CrossRefGoogle Scholar
Efremov, Yu. N. 1995, AJ 110, 2757CrossRefGoogle Scholar
Efremov, Y.N. & Elmegreen, B.G. 1998, MNRAS 299, 588CrossRefGoogle Scholar
Elmegreen, B.G. 2002, ApJ 577, 206CrossRefGoogle Scholar
Elmegreen, B.G., Leitner, S.N., Elmegreen, D.M. & Cuillandre, J.-C. 2003, ApJ 593, 333CrossRefGoogle Scholar
Elmegreen, B.G., Palouŝ, J. & Ehlerova, S. 2002, MNRAS 334, 693CrossRefGoogle Scholar
Elmegreen, B.G. 2004, in: Lamers, H.J.G.L.M., Smith, L.J. & Nota, A. (eds.), The Formation and Evolution of Massive Young Star Clusters (ASP-CS), 322, 277Google Scholar
Elmegreen, B.G. 2005, in: Jose, Carlosdel Toro, Iniesta et al. , (eds.), The many scales in the Universe – JENAM 2004 Astrophysics Reviews (Dordrecht: Kluwer), p. 99Google Scholar
Elmegreen, B.G., Elmegreen, D.M., Chandar, R., Whitmore, B., & Regan, M. 2006, ApJ 644, 879CrossRefGoogle Scholar
Feitzinger, J.V. & Galinski, T. 1987, A&A 179, 249Google Scholar
Fuchs, B. & von Linden, S. 1998, MNRAS 294, 513CrossRefGoogle Scholar
Gao, Y. & Solomon, P.M. 2004, ApJ 606, 271CrossRefGoogle Scholar
Heyer, M.H., Corbelli, E., Schneider, S.E., & Young, J.S. 2004, ApJ 602, 723CrossRefGoogle Scholar
Hoyle, F. 1953, ApJ 118, 513CrossRefGoogle Scholar
Jenkins, E.B & Tripp, T.M. 2001, ApJS 137, 297CrossRefGoogle Scholar
Kennicutt, R.C. 1989, ApJ 344, 685CrossRefGoogle Scholar
Kravtsov, A.V. 2003, ApJ 590, L1CrossRefGoogle Scholar
Krumholz, M.R. & McKee, C.F. 2005, ApJ 630, 250CrossRefGoogle Scholar
Oort, J.H. 1954, BAN 12, 177Google Scholar
Opik, E.J. 1953, Irish J. Astron 2, 219Google Scholar
Padoan, P. & Nordlund, A. 2002, ApJ 576, 870CrossRefGoogle Scholar
Scalo, J. 1985, in: Black, D.C., & Matthews, M.S. (eds.), Protostars and Planets II (Tucson: Univ. of Arizona), p. 201Google Scholar
Willett, K.W., Elmegreen, B.G. & Hunter, D.A. 2005, AJ 129, 2186CrossRefGoogle Scholar
Zasov, A.V. & Smirnova, A.A. 2006, AstL 31, 160Google Scholar
Zhang, Q., Fall, S.M. & Whitmore, B.C. 2001, ApJ 561, 727CrossRefGoogle Scholar
Zwicky, F. 1953, PASP 65, 205CrossRefGoogle Scholar