Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-30T08:13:00.890Z Has data issue: false hasContentIssue false

The cosmic ray ionization rate in the central parsec of the Galaxy

Published online by Cambridge University Press:  22 May 2014

Miwa Goto*
Affiliation:
Universitäts-Sternwarte München, Scheinerstr. 1, D-81679 Munich, Germany email: mgoto@usm.lmu.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Cosmic rays represent a unique crossing point of high-energy astrophysics and astrochemistry. The cosmic ray ionization rate of molecular hydrogen (ζ2) measured by H3+ spectroscopy in the central parsec of the Galaxy is 2 orders of magnitude higher than that in the dense clouds outside the Galactic center. However, it is still too short, by the factor of 10,000, to agree with an extremely high ζ2 that accommodates the new γ-ray observations of Sgr A* and its environment.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aharonian, F., Akhperjanian, A. G., Aye, K.-M., et al. 2004, A&A 425, L13Google Scholar
Becker, J. K., Black, J. H., Safarzadeh, M., & Schuppan, F. 2011, ApJ Lett. 739, L43.Google Scholar
Bergin, E. A., Plume, R., Williams, J. P., & Myers, P. C. 1999, ApJ 512, 724CrossRefGoogle Scholar
Chernyakova, M., Malyshev, D., Aharonian, F. A., Crocker, R. M., & Jones, D. I. 2011, ApJ 726, 60.CrossRefGoogle Scholar
Crocker, R. M., Jones, D. I., Aharonian, F., Law, C. J., Melia, F., Oka, T., & Ott, J. 2011, MNRAS 413, 763Google Scholar
Goto, M., Indriolo, N., Geballe, T. R., & Usuda, T. 2013, JPC A 117, 9919Google Scholar
Goto, M., Geballe, T. R., Indriolo, N., Yusef-Zadeh, F., Usuda, T., Henning, Th. & Oka, T. 2013, ApJ, submittedGoogle Scholar
Hinton, J. A. & Aharonian, F. A. 2007, ApJ 657, 302Google Scholar
Indriolo, N., Fields, B. D. & McCall, B. J. 2009, ApJ 694, 257CrossRefGoogle Scholar
Lee, J.-E., Bergin, E. A., & Evans, N. J. 2004, ApJ 617, 360CrossRefGoogle Scholar
McCall, B. J., Geballe, T. R., Hinkle, K. H., & Oka, T. 1999, ApJ 522, 338Google Scholar
Montero-Castaño, M., Herrnstein, R. M., & Ho, P. T. P. 2009, ApJ, 695, 1477Google Scholar
Morris, M. & Serabyn, E. 1996, ARAA 34, 645Google Scholar
Oka, T. 2006, PNAS, 103, 12235Google Scholar
Padoan, P., Willacy, K., Langer, W., & Juvela, M. 2004, ApJ 614, 203CrossRefGoogle Scholar
Stone, E. C., Cummings, A. C., McDonald, F. B., Heikkila, B. C., Lal, N., & Webber, W. R. 2013, Science 341, 150Google Scholar
Tatischeff, V., Decourchelle, A., & Maurin, G. 2012, A&A 546, 88.Google Scholar
Wakelam, V., Selsis, F., Herbst, E., & Caselli, P. 2005, A&A 444, 883Google Scholar
Wang, Q. D., Lu, F. J., & Gotthelf, E. V. 2006, MNRAS 367, 937Google Scholar
Webber, W. R. 1998, ApJ 506, 329Google Scholar
Webber, W. R., Higbie, P. R., & McDonald, F. B. 2013, arXiv:1308.1895Google Scholar
Williams, J. P., Bergin, E. A., Caselli, P., Myers, P. C., & Plume, R. 1998, ApJ 503, 689Google Scholar
Yusef-Zadeh, F., Muno, M., Wardle, M., & Lis, D. C. 2007, ApJ 656, 847Google Scholar