Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-09T23:33:31.590Z Has data issue: false hasContentIssue false

Discovery of the most distant star-forming and quenched galaxies in the universe

Published online by Cambridge University Press:  04 June 2020

Steven L. Finkelstein*
Affiliation:
The University of Texas at Austin, Austin, TX, 78712, USA email: stevenf@astro.as.utexas.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While the high-redshift component of the CANDELS survey was designed with the z ∼ 6–8 era in mind, these data do probe the far-UV of galaxies at even higher redshift. A few studies have ventured this far out, and have published conflicting results - some continue to find significant star-formation, while others conclude there is a steep decline in this quantity. Here I report on a new search for z = 9–10 galaxies, making significant use of the Spitzer/IRAC data in the CANDELS fields. We have discovered a larger number of galaxies in this epoch than previous works, implying the UV luminosity function, and thus the SFR density, may not evolve as steeply as previously thought. This implies that star-formation begins early in the universe. I will also report on a new study searching for the earliest quenched galaxies at 3 < z < 5, which are not predicted by models, yet may exist if galaxies form very early, and thus can approach their quenching phase quicker.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bouwens, R. J., Illingworth, G. D., Oesch, P. A., et al. 2015, ApJ, 811, 14010.1088/0004-637X/811/2/140CrossRefGoogle Scholar
Bouwens, R. J., Thompson, R. I., Illingworth, G. D., et al. 2004, ApJ, 616, L7910.1086/426503CrossRefGoogle Scholar
Bouwens, R. J., Oesch, P. A., Labbé, I., et al. 2016, ApJ, 830, 67CrossRefGoogle Scholar
Brennan, R., Pandya, V., Somerville, R. S., et al. 2015, MNRAS, 451, 2933CrossRefGoogle Scholar
Coe, D., Zitrin, A., Carrasco, M., et al. 2013, ApJ, 762, 3210.1088/0004-637X/762/1/32CrossRefGoogle Scholar
Finkelstein, S., Dickinson, M., Ferguson, H., et al. 2017, The Cosmic Evolution Early Release Science (CEERS) Survey, JWST Proposal ID 1345. Cycle 0 Early Release SciencGoogle Scholar
Finkelstein, S., Bradac, M., Casey, C., et al. 2019 a, BAAS, 51, 221Google Scholar
Finkelstein, S. L. 2016, PASA, 33, e037CrossRefGoogle Scholar
Finkelstein, S. L., Papovich, C., Ryan, R. E., et al. 2012, ApJ, 758, 9310.1088/0004-637X/758/2/93CrossRefGoogle Scholar
Finkelstein, S. L., Papovich, C., Dickinson, M., et al. 2013, Nature, 502, 524CrossRefGoogle Scholar
Finkelstein, S. L., Ryan, Jr., , R. E., Papovich, C., et al. 2015, ApJ, 810, 7110.1088/0004-637X/810/1/71CrossRefGoogle Scholar
Finkelstein, S. L., D’Aloisio, A., Paardekooper, J.-P., et al. 2019 b, arXiv e-printsGoogle Scholar
Glazebrook, K., Schreiber, C., Labbé, I., et al. 2017, Nature, 544, 71CrossRefGoogle Scholar
Grazian, A., Giallongo, E., Paris, D., et al. 2017, A&A, 602, A18Google Scholar
Hashimoto, T., Laporte, N., Mawatari, K., et al. 2018, Nature, 557, 39210.1038/s41586-018-0117-zCrossRefGoogle Scholar
Hoag, A., Bradač, M., Trenti, M., et al. 2017, Nature Astronomy, 1, 0091CrossRefGoogle Scholar
Hoag, A., Bradač, M., Huang, K., et al. 2019, ApJ, 878, 12CrossRefGoogle Scholar
Jung, I., Finkelstein, S. L., Livermore, R. C., et al. 2018, ApJ, 864, 10310.3847/1538-4357/aad686CrossRefGoogle Scholar
Jung, I., Finkelstein, S. L., Dickinson, M., et al. 2019, arXiv e-prints, https://arxiv.org/abs/1901.05967 arXiv:1901.05967Google Scholar
Laporte, N., Nakajima, K., Ellis, R. S., et al. 2017, ApJ, 851, 40CrossRefGoogle Scholar
Larson, R. L., Finkelstein, S. L., Pirzkal, N., et al. 2018, ApJ, 858, 9410.3847/1538-4357/aab893CrossRefGoogle Scholar
Malhotra, S. & Rhoads, J. E. 2004, ApJL, 617, L5CrossRefGoogle Scholar
Mason, C. A., Treu, T., Dijkstra, M., et al. 2018, ApJ, 856, 210.3847/1538-4357/aab0a7CrossRefGoogle Scholar
Mason, C. A., Fontana, A., Treu, T., et al. 2019, MNRAS, 485, 3947CrossRefGoogle Scholar
McLeod, D. J., McLure, R. J., Dunlop, J. S., et al. 2015, MNRAS, 450, 303210.1093/mnras/stv780CrossRefGoogle Scholar
Miralda-Escudé, J. & Rees, M. J. 1998, ApJ, 497, 21CrossRefGoogle Scholar
Oesch, P. A., Bouwens, R. J., Illingworth, G. D., Labbé, I., & Stefanon, M. 2018, ApJ, 855, 105CrossRefGoogle Scholar
Oesch, P. A., van Dokkum, P. G., Illingworth, G. D., et al. 2015, ApJL, 804, L3010.1088/2041-8205/804/2/L30CrossRefGoogle Scholar
Paardekooper, J.-P., Khochfar, S., & Dalla Vecchia, C. 2015, MNRAS, 451, 254410.1093/mnras/stv1114CrossRefGoogle Scholar
Papovich, C., Shipley, H. V., Mehrtens, N., et al. 2016, ApJS, 224, 28CrossRefGoogle Scholar
Robertson, B. E., Ellis, R. S., Furlanetto, S. R., & Dunlop, J. S. 2015, ApJL, 802, L1910.1088/2041-8205/802/2/L19CrossRefGoogle Scholar
Robertson, B. E., Furlanetto, S. R., Schneider, E., et al. 2013, ApJ, 768, 7110.1088/0004-637X/768/1/71CrossRefGoogle Scholar
Shibuya, T., Kashikawa, N., Ota, K., et al. 2012, ApJ, 752, 114CrossRefGoogle Scholar
Siana, B., Teplitz, H. I., Ferguson, H. C., et al. 2010, ApJ, 723, 24110.1088/0004-637X/723/1/241CrossRefGoogle Scholar
Stark, D. P., Ellis, R. S., Charlot, S., et al. 2016, MNRASGoogle Scholar
Wold, I. G. B., Kawinwanichakij, L., Stevans, M. L., et al. 2019, ApJS, 240, 510.3847/1538-4365/aaee85CrossRefGoogle Scholar
Xu, H., Wise, J. H., Norman, M. L., Ahn, K., & O’Shea, B. W. 2016, ApJ, 833, 84CrossRefGoogle Scholar
Yung, L. Y. A., Somerville, R. S., Finkelstein, S. L., Popping, G., & Davé, R. 2019, MNRAS, 483, 2983CrossRefGoogle Scholar
Zitrin, A., Labbé, I., Belli, S., et al. 2015, ApJL, 810, L1210.1088/2041-8205/810/1/L12CrossRefGoogle Scholar