Hostname: page-component-68945f75b7-76l5x Total loading time: 0 Render date: 2024-08-06T09:10:53.275Z Has data issue: false hasContentIssue false

Distance estimates to five open clusters based on 2mass data of red clump giants

Published online by Cambridge University Press:  26 February 2013

Li Chen
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China email: chenli@shao.ac.cn
Xinhua Gao
Affiliation:
School of Information Science and Engineering, Changzhou University, Changzhou 213164, China email: xhgao@cczu.edu.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Red clump (RC) giants are excellent standard candles in the Milky Way and the Large Magellanic Cloud. The near-infrared K-band intrinsic luminosity of RC giants exhibits only a small variance and a weak dependence on chemical composition and age. In addition, RCs are often easily recognizable in the color–magnitude diagrams of open clusters, which renders them extremely useful distance indicators for some intermediate-age or old open clusters. Here we determine the distance moduli of five Galactic open clusters covering a range of metallicities and ages, based on RC giants in the cluster regions using 2mass photometric data. We compare our result with those from main-sequence fitting and also briefly discuss the advantages and disadvantages of RC-based cluster distance determination.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Alves, D. R. 2000, ApJ, 539, 732Google Scholar
Anthony-Twarog, B. J., Twarog, B. A., Kaluzny, J., & Shara, M. M. 1990, AJ, 99, 1504CrossRefGoogle Scholar
Bartašiutė, S. & Tautvaišienė, G. 2004, Ap&SS, 294, 225Google Scholar
Bedin, L. R., Salaris, M., King, I. R., Piotto, G., Anderson, J., & Cassisi, S. 2010, ApJ, 708, L32Google Scholar
Boyle, R. P., Kazlauskas, A., Vansevicius, V., Straizys, V., Vrba, F. J., Sudzius, J., & Smriglio, F. 1998, Balt. Astron., 7, 369Google Scholar
Carraro, G., Girardi, L., & Marigo, P. 2002, MNRAS, 332, 705CrossRefGoogle Scholar
Carraro, G., Villanova, S., Demarque, P., McSwain, M. V., Piotto, G., & Bedin, L. R. 2006, ApJ, 643, 1151CrossRefGoogle Scholar
Chaboyer, B., Green, E. M., & Liebert, J. 1999, AJ, 117, 1360Google Scholar
Christian, C. A., Heasley, J. N., & Janes, K. A. 1985, ApJ, 299, 683Google Scholar
Cutri, R. M., et al. 2003, The IRSA 2MASS All-Sky Point Source Catalog, NASA/IPAC Infrared Science Archive; http://irsa.ipac.caltech.edu/applications/Gator/Google Scholar
Dias, W. S., Alessi, B. S., Moitinho, A., & Lépine, J. R. D. 2002, A&A, 389, 871Google Scholar
Groenewegen, M. A. T. 2008, A&A, 488, 935Google Scholar
King, I. R., Bedin, L. R., Piotto, G., Cassisi, S., & Anderson, J. 2005, AJ, 130, 626Google Scholar
Lee, S. H., Kang, Y.-W., & Ann, H. B. 1999, Publ. Kor. Astron. Soc., 14, 61Google Scholar
Paczyński, B. & Stanek, K. Z. 1998, ApJ, 494, L219Google Scholar
Sarajedini, A., Dotter, A., & Kirkpatrick, A. 2009, ApJ, 698, 1872CrossRefGoogle Scholar
Vallenari, A., Carraro, G., & Richichi, A. 2000, A&A, 353, 147Google Scholar
Van Helshoecht, V. & Groenewegen, M. A. T. 2007, A&A, 463, 559Google Scholar
Wu, Z.-Y., Zhou, X., Ma, J., Jiang, Z.-J., Chen, J.-S., & Wu, J.-H. 2007, AJ, 133, 2061CrossRefGoogle Scholar