Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-01T14:48:47.769Z Has data issue: false hasContentIssue false

The distance scale of Type II Cepheids from near-infrared observations in the Magellanic Clouds

Published online by Cambridge University Press:  06 February 2024

T. Sicignano*
Affiliation:
INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131, Naples, Italy
V. Ripepi
Affiliation:
INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131, Naples, Italy
R. Molinaro
Affiliation:
INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131, Naples, Italy
A. Bhardwaj
Affiliation:
INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131, Naples, Italy
M. Marconi
Affiliation:
INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131, Naples, Italy
M.-R. L. Cioni
Affiliation:
Leibniz-Institut für Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany

Abstract

We employed data from the VISTA near-infrared YJKS survey of the Magellanic System to analyse the light curves of Type II Cepheids (T2Cs) in the Large and Small Magellanic Clouds (LMC and SMC, respectively). Using the T2Cs identified by the OGLE IV survey and Gaia mission, we built up a sample of about 330 pulsators belonging to both galaxies. For all these objects we obtained accurate intensity-averaged magnitudes in the YJKS bands by means of a template-fitting technique. We complemented our near-infrared data with optical photometry from the literature to calculate period-luminosity and period-Wesenheit relations for a variety of different bands and colour combinations and separately for the different T2C subclasses (BL Herculis, W Virginis, peculiar W Virginis, RV Tauri). These relations, calibrated with the LMC distance modulus, were tested using T2Cs belonging to Galactic globular clusters. We thus calculated the distances of 22 clusters and compared them with the literature values, mainly based on RR Lyrae stars, finding good agreement within 1 σ and dispersion of the order of 0.3 – 0.5 kpc, depending on the adopted period-luminosity/period-Wesenheit relation.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumgardt, H., & Vasiliev, E. 2021, MNRAS, 505, 5957 Google Scholar
Bhardwaj, A., Macri, L. M., Rejkuba, M., et al. 2017, AJ, 153, 154 Google Scholar
Bhardwaj, A., Rejkuba, M., Sloan, G. C., et al. 2021, ApJ, 922, 20 Google Scholar
Braga, V. F., Bono, G., Fiorentino, G., et al. 2020, A&A, 644, A95 Google Scholar
Cappellari, M., McDermid, R. M., Alatalo, K., et al. 2013, MNRAS, 432, 1862.Google Scholar
Caputo, F., Marconi, M., & Ripepi, V. 1999, ApJ, 525, 784 Google Scholar
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245 Google Scholar
Casagrande, L., & VandenBerg, D. A. 2018, MNRAS, 479, L102 Google Scholar
Cioni, M.-R., Clementini, G., Girardi, L., et al. 2011, Msngr, 144, 25 Google Scholar
Clementini, G., Ripepi, V., Leccia, S., et al. 2016, A&A, 595, A133 Google Scholar
Clementini, G., Ripepi, V., Molinaro, R., et al. 2019, A&A, 622, A60 Google Scholar
Cross, N. J. G., Collins, R. S., Mann, R. G., et al. 2012, A&A, 548, A119 Google Scholar
Emerson, J., McPherson, A., & Sutherland, W. 2006, Msngr, 126, 41 Google Scholar
Feast, M. W., Laney, C. D., Kinman, T. D., et al. 2008, MNRAS, 386, 2115 Google Scholar
Collaboration, Gaia, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1 Google Scholar
Harris, W. E. 2010, arXiv:1012.3224Google Scholar
Inno, L., Matsunaga, N., Bono, G., et al. 2013, ApJ, 764, 84 Google Scholar
Leroy, A. M., & Rousseeuw, P. J. 1987, Robust Regression and Outlier Detection (Wiley, New York)Google Scholar
Madore, B. F. 1982, ApJ, 253, 575 Google Scholar
Moretti, M. I., Clementini, G., Muraveva, T., et al. 2014, MNRAS, 437, 2702 Google Scholar
Ngeow, C.-C., Bhardwaj, A., Henderson, J.-Y., et al. 2022, AJ, 164, 154 Google Scholar
Pietrzyński, G., Graczyk, D., Gallenne, A., et al. 2019, Nature, 567, 200 Google Scholar
Riess, A. G., Yuan, W., Macri, L. M., et al. 2022, ApJL, 934, L7 Google Scholar
Ripepi, V., Moretti, M. I., Clementini, G., et al. 2012, Ap&SS, 341, 51 Google Scholar
Ripepi, V., Moretti, M. I., Marconi, M., et al. 2012, MNRAS, 424, 1807 Google Scholar
Ripepi, V., Moretti, M. I., Marconi, M., et al. 2015, MNRAS, 446, 3034 Google Scholar
Ripepi, V., Marconi, M., Moretti, M. I., et al. 2016, ApJS, 224, 21 Google Scholar
Ripepi, V., Cioni, M.-R. L., Moretti, M. I., et al. 2017, MNRAS, 472, 808 Google Scholar
Ripepi, V., Molinaro, R., Musella, I., et al. 2019, A&A, 625, A14 Google Scholar
Ripepi, V., Catanzaro, G., Molinaro, R., et al. 2020, A&A, 642, A230 Google Scholar
Ripepi, V., Chemin, L., Molinaro, R., et al. 2022, MNRAS, 512, 563 Google Scholar
Ripepi, V., Clementini, G., Molinaro, R., et al. 2023, A&A, 674, A17 Google Scholar
Skowron, D. M., Skowron, J., Udalski, A., et al. 2021, ApJS, 252, 23 Google Scholar
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525 Google Scholar
Soszyński, I., Udalski, A., Szymański, M. K., et al. 2015, MemSAIt, 86, 257 Google Scholar
Soszyński, I., Udalski, A., Szymański, M. K., et al. 2018, AcA, 68, 89 Google Scholar
Vallenari, A., Arenou, F., Bellazzini, M., et al. 2022, Gaia DR3 documentation, European Space Agency; Gaia Data Processing and Analysis ConsortiumGoogle Scholar