Hostname: page-component-84b7d79bbc-rnpqb Total loading time: 0 Render date: 2024-07-26T19:22:24.687Z Has data issue: false hasContentIssue false

Dynamics, temperature, chemistry, and dust: Ingredients for a self-consistent AGB wind

Published online by Cambridge University Press:  30 December 2019

J. Boulangier
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: jels.boulangier@kuleuven.be
D. Gobrecht
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: jels.boulangier@kuleuven.be
L. Decin
Affiliation:
Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium email: jels.boulangier@kuleuven.be University of Leeds, School of Chemistry, Leeds LS2 9JT, United Kingdom
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding Asymptotic Giant Branch (AGB) stars is important as they play a vital role in the chemical life cycle of galaxies. AGB stars are in a phase of their life time where they have almost ran out of fuel and are losing vast amounts of material to their surroundings, via stellar winds. As this is an evolutionary phase of low mass stars, almost all stars go through this phase making them one of the main contributors to the chemical enrichment of galaxies. It is therefore important to understand what kind of material is being lost by these stars, and how much and how fast. This work summarises the steps we have taken towards developing a self-consistent AGB wind model. We improve on current models by firstly coupling chemical and hydrodynamical evolution, and secondly by upgrading the nucleation theory framework to investigate the creation of TiO2, SiO, MgO, and Al2O3 clusters.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Bowen, G. H. 1988, ApJ, 329, 299 CrossRefGoogle Scholar
Boulangier, J., Clementel, N., et al. 2018, MNRAS, acceptedGoogle Scholar
Boulangier, J., Gobrecht, D., et al. (in prep.)Google Scholar
Bromley, S. T., Gómez Martn, J. C., & Plane, J. M. C. 2016, Phys.Chem.Chem.Phys., 18, 26913 CrossRefGoogle Scholar
Cherchneff, I. 2012, A&A, 545, A12 Google Scholar
Gail, H.-P., Wetzel, S., Pucci, A., Tamanai, A. 2013, A&A, 555, A119 Google Scholar
Gobrecht, D., Cherchneff, I., Sarangi, A., Plane, J. M. C., Bromley, S. T. 2016, A&A, 585, A6 Google Scholar
Goumans, T. P. M., Bromley, S. T. 2012, MNRAS Google Scholar
Grassi, T. and Bovino, S. el al. 2014, MNRAS, 439, 2386 CrossRefGoogle Scholar
Helling, Ch ., Woitke, P. 2006, A&A, 455, 325 Google Scholar
Höfner, S. and Bladh, S. and Aringer, B. and Ahuja, R. 2016, A&A, 594, A108 Google Scholar
Keppens, R., Meliani, Z., et al. 2012, J. Comput. Phys., 231, 718 CrossRefGoogle Scholar
Köhler, T. M., Gail, H.-P., Sedlmayr, E., 1997, A&A, 1997, 320, 553 Google Scholar
Lazzati, D., & Heger, A. 2016, ApJ, 817, 134 CrossRefGoogle Scholar
Lee, G. K. H., Blecic, J., Helling, Ch. 2018, A&A, 614, 126 Google Scholar
Marigo, P., Ripamonti, E., Nanni, A., Bressan, A., Girardi, L. 2016, MNRAS, 456, 23 CrossRefGoogle Scholar
Nozawa, T., Kozasa, T., & Habe, A. 2006, ApJ, 648, 435 CrossRefGoogle Scholar
Patzer, A. B. C., Gauger, A., Sedlmayr, E. 1998, A&A, 337, 847 Google Scholar
Plane, J. M. C. 2013, Phil. Trans. of the Royal Society of London Series A, 371, 20120335 Google Scholar
Plewa, T. and Müller, E. 1999, A&A, 342, 179 Google Scholar
Sluder, A., Milosavljević, M., & Montgomery, M. H. 2018, MNRAS, 480, 5580 Google Scholar
Willson, A. L. 2000, ARA&A, 38, 573 CrossRefGoogle Scholar
Woitke, P. 2006, A&A, 452, 537 Google Scholar