Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T06:47:52.591Z Has data issue: false hasContentIssue false

Evolution histories of massive galaxies at z∼2 over the past 3 Gyr

Published online by Cambridge University Press:  10 June 2020

T. Morishita
Affiliation:
Space Telescope Science Institute, Baltimore, MD, USA email: tmorishita@stsci.edu
L. E. Abramson
Affiliation:
The Observatories of the Carnegie Institution for Science, Pasadena, CA, USA
T. Treu
Affiliation:
Department of Physics and Astronomy, UCLA, Los Angeles, CAUSA
G. B. Brammer
Affiliation:
Space Telescope Science Institute, Baltimore, MD, USA email: tmorishita@stsci.edu Cosmic Dawn Centre, University of Copenhagen, Copenhagen, Denmark
T. Jones
Affiliation:
University of California Davis, Davis, CA, USA
P. Kelly
Affiliation:
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
M. Stiavelli
Affiliation:
Space Telescope Science Institute, Baltimore, MD, USA email: tmorishita@stsci.edu
M. Trenti
Affiliation:
School of Physics, University of Melbourne, Parkville VIC, Australia ARC Centre of Excellence for All-Sky Astrophysics in 3 Dimensions, Parkville VIC, Australia
B. Vulcani
Affiliation:
INAF – Osservatorio Astronomico di Padova, Padova, Italy
X. Wang
Affiliation:
Department of Physics and Astronomy, UCLA, Los Angeles, CAUSA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study star formation and metallicity enrichment histories of 24 massive galaxies at 1.6 < z < 2.5. Deep slitless spectroscopy + imaging data set collected from multiple HST surveys allows robust determination of their SEDs. Our new SED modeling with no functional assumptions on star formation histories revels that 1. most of the sample galaxies have already formed >50% of their extant masses ∼1.5 Gyr before the time of observed redshifts, with a trend where more massive galaxies form earlier, 2. most of our galaxies already have stellar metallicities compatible with those of local early-type galaxies, and 3. inferred metallicities are on average ∼ 0.25 dex higher than observed gas-phase metallicities of star forming galaxies at the time of their formation. Continuation of low-level star formation, rather than abrupt termination of star forming activity, may explain the observed gap of metallicities.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bell, E. F., McIntosh, D. H., Katz, N., & Weinberg, M. D. 2003, ApJS, 149, 28910.1086/378847CrossRefGoogle Scholar
Belli, S., Newman, A. B., & Ellis, R. S. 2017, ApJ, 834, 1810.3847/1538-4357/834/1/18CrossRefGoogle Scholar
Cid Fernandes, R., Mateus, A., Sodré, L., Stasińska, G., & Gomes, J. M. 2005, MNRAS, 358, 36310.1111/j.1365-2966.2005.08752.xCrossRefGoogle Scholar
Cole, S., Norberg, P., Baugh, C. M., Frenk, C. S., Bland-Hawthorn, J., Bridges, T., Cannon, R., Colless, M., et al. 2001, MNRAS, 326, 25510.1046/j.1365-8711.2001.04591.xCrossRefGoogle Scholar
Daddi, E., Renzini, A., Pirzkal, N., Cimatti, A., Malhotra, S., Stiavelli, M., Xu, C., Pasquali, A., et al. 2005, ApJ, 626, 68010.1086/430104CrossRefGoogle Scholar
Erb, D. K., Shapley, A. E., Pettini, M., Steidel, C. C., Reddy, N. A., & Adelberger, K. L. 2006, ApJ, 644, 81310.1086/503623CrossRefGoogle Scholar
Foreman-Mackey, D., Sick, J., & Johnson, B. 2014, doi:10.5281/zenodo.12157CrossRefGoogle Scholar
Gallazzi, A., Bell, E. F., Zibetti, S., Brinchmann, J., & Kelson, D. D. 2014, ApJ, 788, 7210.1088/0004-637X/788/1/72CrossRefGoogle Scholar
Gallazzi, A., Charlot, S., Brinchmann, J., White, S. D. M., & Tremonti, C. A. 2005, MNRAS, 362, 4110.1111/j.1365-2966.2005.09321.xCrossRefGoogle Scholar
Glazebrook, K., Schreiber, C., Labbé, I., Nanayakkara, T., Kacprzak, G. G., Oesch, P. A., Papovich, C., Spitler, L. R., et al. 2017, Natur, 544, 7110.1038/nature21680CrossRefGoogle Scholar
Gobat, R., Daddi, E., Magdis, G., Bournaud, F., Sargent, M., Martig, M., Jin, S., Finoguenov, A., et al. 2018, Nature Astronomy, 2, 23910.1038/s41550-017-0352-5CrossRefGoogle Scholar
Kelly, P. L., Brammer, G., Selsing, J., Foley, R. J., Hjorth, J., Rodney, S. A., Christensen, L., Strolger, L.-G., et al. 2016, ApJ, 831, 20510.3847/0004-637X/831/2/205CrossRefGoogle Scholar
Maiolino, R., Nagao, T., Grazian, A., Cocchia, F., Marconi, A., Mannucci, F., Cimatti, A., Pipino, A., et al. 2008, A&A, 488, 463Google Scholar
Momcheva, I. G., Brammer, G. B., van Dokkum, P. G., Skelton, R. E., Whitaker, K. E., Nelson, E. J., Fumagalli, M., Maseda, M. V, et al. 2016, ApJS, 225, 2710.3847/0067-0049/225/2/27CrossRefGoogle Scholar
Morishita, T., Abramson, L. E., Treu, T., Brammer, G. B., Jones, T., Kelly, P., Stiavelli, M., Trenti, M., et al. 2018, arXiv e-prints,arXiv:1812.06980Google Scholar
Panter, B., Jimenez, R., Heavens, A. F., & Charlot, S. 2008, MNRAS, 391, 111710.1111/j.1365-2966.2008.13981.xCrossRefGoogle Scholar
Peng, Y., Maiolino, R., & Cochrane, R. 2015, Natur, 521, 19210.1038/nature14439CrossRefGoogle Scholar
Schmidt, K. B., Treu, T., Brammer, G. B., Bradač, M., Wang, X., Dijkstra, M., Dressler, A., Fontana, A., et al. 2014, ApJL, 782, L3610.1088/2041-8205/782/2/L36CrossRefGoogle Scholar
Skelton, R. E., Whitaker, K. E., Momcheva, I. G., Brammer, G. B., van Dokkum, P. G., Labbé, I., Franx, M., van der Wel, A., et al. 2014, ApJS, 214, 2410.1088/0067-0049/214/2/24CrossRefGoogle Scholar
Treu, T., Schmidt, K. B., Brammer, G. B., Vulcani, B., Wang, X., Bradač, M., Dijkstra, M., Dressler, A., et al. 2015, ApJ, 812, 11410.1088/0004-637X/812/2/114CrossRefGoogle Scholar
van Dokkum, P., Brammer, G., Momcheva, I., Skelton, R. E., Whitaker, K. E., & for the 3D-HST team, 2013, ArXiv e-prints,arXiv:1305.2140Google Scholar
van Dokkum, P. G., Franx, M., Kriek, M., Holden, B., Illingworth, G. D., Magee, D., Bouwens, R., Marchesini, D., et al. 2008, ApJL, 677, L510.1086/587874CrossRefGoogle Scholar
Verma, A., Lehnert, M. D., Förster Schreiber, N. M., Bremer, M. N., & Douglas, L. 2007, MNRAS, 377, 102410.1111/j.1365-2966.2007.11455.xCrossRefGoogle Scholar