Hostname: page-component-84b7d79bbc-g7rbq Total loading time: 0 Render date: 2024-07-29T20:35:27.875Z Has data issue: false hasContentIssue false

The evolution of magnetic hot massive stars: Implementation of the quantitative influence of surface magnetic fields in modern models of stellar evolution

Published online by Cambridge University Press:  28 July 2017

Zsolt Keszthelyi
Affiliation:
Department of Physics, Royal Military College of Canada, PO Box 17000 Station Forces, Kingston, ON, K7K 0C6, Canada email: zsolt.keszthelyi@rmc.ca Department of Physics, Engineering Physics and Astronomy, Queen’s University, 99 University Avenue, Kingston, ON, K7L 3N6, Canada
Gregg A. Wade
Affiliation:
Department of Physics, Royal Military College of Canada, PO Box 17000 Station Forces, Kingston, ON, K7K 0C6, Canada email: zsolt.keszthelyi@rmc.ca
Véronique Petit
Affiliation:
Department of Physics and Space Sciences, Florida Institute of Technology, 150 W. University Blvd, Melbourne, FL, 32904, USA Department of Physics and Astronomy, University of Delaware, Newark, DE, 19711, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Large-scale dipolar surface magnetic fields have been detected in a fraction of OB stars, however only few stellar evolution models of massive stars have considered the impact of these fossil fields. We are performing 1D hydrodynamical model calculations taking into account evolutionary consequences of the magnetospheric-wind interactions in a simplified parametric way. Two effects are considered: i) the global mass-loss rates are reduced due to mass-loss quenching, and ii) the surface angular momentum loss is enhanced due to magnetic braking. As a result of the magnetic mass-loss quenching, the mass of magnetic massive stars remains close to their initial masses. Thus magnetic massive stars - even at Galactic metallicity - have the potential to be progenitors of ‘heavy’ stellar mass black holes. Similarly, at Galactic metallicity, the formation of pair instability supernovae is plausible with a magnetic progenitor.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Babel, J. & Montmerle, T., 1997, A&A, 323, 121 Google Scholar
Bard, C. & Townsend, R. H. D., 2016, MNRAS, 462, 3672 Google Scholar
Braithwaite, J., 2008, MNRAS, 386, 1947 CrossRefGoogle Scholar
Braithwaite, J. & Spruit, H. C. 2015, ArXiv 1510.03198Google Scholar
Briquet, M., Neiner, C., Aerts, C., et al. 2012, MNRAS, 427, 483 CrossRefGoogle Scholar
Donati, J. & Landstreet, J. D., 2009, ARAA, 47, 333 CrossRefGoogle Scholar
Ferrario, L. & Wickramasinghe, D., 2006, MNRAS, 367, 1323 CrossRefGoogle Scholar
Fossati, L., Schneider, F. R. N., Castro, N., et al. 2016, A&A, 592, A84 Google Scholar
Keszthelyi, Z., Puls, J., & Wade, G. A., 2017, A&A, 598, A4 Google Scholar
Landstreet, J. D., Bagnulo, S., Andretta, V., et al. 2007, A&A, 470, 685 Google Scholar
Meynet, G., Eggenberger, P., & Maeder, A., 2011, A&A, 525, L11 Google Scholar
Moravveji, E., Aerts, C., Pápics, P. I., Triana, S. A., & Vandoren, B., 2015, A&A, 580, A27 Google Scholar
Owocki, S. P. & ud-Doula, A., 2004, ApJ, 600, 1004 Google Scholar
Owocki, S. P., ud-Doula, A., Sundqvist, J. O., et al. 2016, MNRAS, 462, 3830 CrossRefGoogle Scholar
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3 Google Scholar
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4 CrossRefGoogle Scholar
Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15 CrossRefGoogle Scholar
Petit, V., Keszthelyi, Z., MacInnis, R., et al. 2017, MNRAS, 466, 1052 CrossRefGoogle Scholar
Petit, V., Owocki, S. P., Wade, G. A., et al. 2013, MNRAS, 429, 398 Google Scholar
Petrov, B., Vink, J., & Gräfener, G., 2016, MNRAS, 458, 1999 Google Scholar
ud-Doula, A. & Owocki, S. P., 2002, ApJ, 576, 413 CrossRefGoogle Scholar
ud-Doula, A., Owocki, S. P., & Townsend, R. H. D., 2008, MNRAS, 385, 97 CrossRefGoogle Scholar
ud Doula, A., Owocki, S. P., & Townsend, R. H. D., 2009, MNRAS, 392, 1022 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M., 2000, A&A, 362, 295 Google Scholar
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M., 2001, A&A, 369, 574 Google Scholar
Wade, G. A., Neiner, C., Alecian, E., et al. 2016, MNRAS, 456, 2 CrossRefGoogle Scholar