Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-29T16:35:24.087Z Has data issue: false hasContentIssue false

Formation of Supermassive Stars and the Direct Collapse to Black Holes

Published online by Cambridge University Press:  29 August 2024

John A. Regan*
Affiliation:
Department of Theoretical Physics, Maynooth University Maynooth, Ireland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supermassive stars represent a promising avenue for seeding the (super-)massive black holes observed in the centres of massive galaxies. In these proceedings I review the motivation on the need for supermassive stars as a progenitor pathway for seeding massive black holes. I discuss the currently understood limitations of seeds produced by less massive stars (i.e. remnants from the first generation of stars) and advocate that more massive stars - with masses up to M ∼ 105Mȯ - formed under the conditions of hierarchical structure formation, in rare haloes, are the favoured pathway. Finally, I discuss some recent high resolution simulations demonstrating the formation of supermassive stars in early galaxies.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., Adams, C., Adams, T., Addesso, P., Adhikari, R. X., and et al. Observation of Gravitational Waves from a Binary Black Hole Merger. Physical Review Letters, 1160 (6):0 061102, February 2016. doi: 10.1103/PhysRevLett.116.061102.Google Scholar
Agarwal, B., Khochfar, S., Johnson, J. L., Neistein, E., Dalla Vecchia, C., and Livio, M.. Ubiquitous seeding of supermassive black holes by direct collapse. MNRAS, 425:0 2854–2871, October 2012. doi: 10.1111/j.1365-2966.2012.21651.x.CrossRefGoogle Scholar
Agarwal, B., Dalla Vecchia, C., Johnson, J. L., Khochfar, S., and Paardekooper, J.-P.. The First Billion Years project: birthplaces of direct collapse black holes. MNRAS, 443:0 648–657, September 2014. doi: 10.1093/mnras/stu1112.CrossRefGoogle Scholar
Alvarez, M. A., Wise, J. H., and Abel, T.. Accretion onto the First Stellar-Mass Black Holes. ApJL, 701:0 L133–L137, August 2009. doi: 10.1088/0004-637X/701/2/L133.CrossRefGoogle Scholar
Baldassare, Vivienne F., Dickey, Claire, Geha, Marla, and Reines, Amy E.. Populating the Low-mass End of the M BH -sigma Relation. ApJL, 8980 (1):0 L3, July 2020. doi: 10.3847/2041-8213/aba0c1.Google Scholar
Bellovary, Jillian M., Cleary, Colleen E., Ferah Munshi, Michael Tremmel, Christensen, Charlotte R., Brooks, Alyson, and Quinn, Thomas R.. Multimessenger signatures of massive black holes in dwarf galaxies. MNRAS, 4820 (3):0 2913–2923, January 2019. doi: 10.1093/mnras/sty2842.Google Scholar
Corey Brummel-Smith, Greg Bryan, Iryna Butsky, Lauren Corlies, Andrew Emerick, John Forbes, Yusuke Fujimoto, Nathan Goldbaum, Philipp Grete, Cameron Hummels, Ji-hoon Kim, Daegene Koh, Miao Li, Yuan Li, Li, Xinyu, Brian OShea, Molly Peeples, John Regan, Munier Salem, Wolfram Schmidt, Christine Simpson, Britton Smith, Jason Tumlinson, Matthew Turk, John Wise, Tom Abel, James Bordner, Renyue Cen, David Collins, Brian Crosby, Philipp Edelmann, Oliver Hahn, Robert Harkness, Elizabeth Harper-Clark, Shuo Kong, Alexei Kritsuk, Michael Kuhlen, James Larrue, Eve Lee, Greg Meece, Michael Norman, Jeffrey Oishi, Pascal Paschos, Carolyn Peruta, Alex Razoumov, Daniel Reynolds, Devin Silvia, Samuel Skillman, Stephen Skory, Geoffrey So, Elizabeth Tasker, Rick Wagner, Peng Wang, Hao Xu, and Fen Zhao. ENZO: An Adaptive Mesh Refinement Code for Astrophysics (Version 2.6). The Journal of Open Source Software, 40 (42):0 1636, Oct 2019. doi: 10.21105/joss.01636.Google Scholar
Bryan, G. L., Norman, M. L., O’Shea, B. W., Abel, T., Wise, J. H., Turk, M. J., and Enzo Collaboration, The. ENZO: An Adaptive Mesh Refinement Code for Astrophysics. ApJS, 211:0 19, April 2014. doi: 10.1088/0067-0049/211/2/19.CrossRefGoogle Scholar
Dijkstra, Mark, Ferrara, Andrea, and Mesinger, Andrei. Feedback-regulated supermassive black hole seed formation. MNRAS, 4420 (3):0 2036–2047, August 2014.Google Scholar
Glenna Dunn, Jillian Bellovary, Holley-Bockelmann, Kelly, Christensen, Charlotte, and Quinn, Thomas. Sowing Black Hole Seeds: Direct Collapse Black Hole Formation with Realistic Lyman-Werner Radiation in Cosmological Simulations. ApJ, 8610 (1):0 39, July 2018. doi: 10.3847/1538-4357/aac7c2.Google Scholar
Eisenstein, D. J. and Loeb, A.. Origin of quasar progenitors from the collapse of low-spin cosmological perturbations. ApJ, 443:0 11–17, April 1995. doi: 10.1086/175498.CrossRefGoogle Scholar
Faber, S. M., Scott Tremaine, Edward A. Ajhar, Yong-Ik Byun, Alan Dressler, Karl Gebhardt, Carl Grillmair, John Kormendy, Lauer, Tod R., and Richstone, Douglas. The Centers of Early-Type Galaxies with HST. IV. Central Parameter Relations. AJ, 114:0 1771, November 1997. doi: 10.1086/118606.CrossRefGoogle Scholar
Fan, X., Strauss, M. A., Becker, R. H., White, R. L., Gunn, J. E., Knapp, G. R., Richards, G. T., Schneider, D. P., Brinkmann, J., and Fukugita, M.. Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z6 Quasars. II. A Sample of 19 Quasars. AJ, 132:0 117–136, July 2006. doi: 10.1086/504836.CrossRefGoogle Scholar
Fernandez, R., Bryan, G. L., Haiman, Z., and Li, M.. H2 suppression with shocking inflows: testing a pathway for supermassive black hole formation. MNRAS, 439:0 3798–3807, April 2014. doi: 10.1093/mnras/stu230.CrossRefGoogle Scholar
Mélanie Habouzit, Marta Volonteri, Latif, Muhammad, Dubois, Yohan, and Peirani, Sébastien. On the number density of ‘direct collapse’ black hole seeds. MNRAS, 4630 (1):0 529–540, November 2016.Google Scholar
Haemmerlé, L.. General-relativistic instability in rapidly accreting supermassive stars: The impact of rotation. A&A, 650:0 A204, June 2021. doi: 10.1051/0004-6361/202140893.Google Scholar
Zoltan Haiman, William N. Brandt, Alexey Vikhlinin, Jillian Bellovary, Elena Gallo, Jenny Greene, Kohei Inayoshi, Joseph Lazio, Bret Lehmer, Bin Luo, Piero Madau, Priya Natarajan, Feryal Ozel, Fabio Pacucci, Alberto Sesana, Daniel Stern, Cristian Vignali, Eli Visbal, Fabio Vito, Volonteri, Marta, and Wrobel, Joan. Electromagnetic Window into the Dawn of Black Holes. BAAS, 510 (3):0 557, May 2019.Google Scholar
Shingo Hirano, Takashi Hosokawa, Yoshida, Naoki, and Kuiper, Rolf. Supersonic gas streams enhance the formation of massive black holes in the early universe. Science, 3570 (6358):0 1375–1378, September 2017. doi: 10.1126/science.aai9119.Google Scholar
Kormendy, J. and Ho, L. C.. Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. ARA&A, 51:0 511–653, August 2013. doi: 10.1146/annurev-astro-082708-101811.Google Scholar
Latif, Muhammad A., Whalen, Daniel J., Sadegh Khochfar, Nicholas P. Herrington, and Tyrone E. Woods. Turbulent Cold Flows Gave Birth to the First Quasars. arXiv e-prints, art. arXiv:2207.05093, July 2022.Google Scholar
Abraham Loeb and Frederic A. Rasio. Collapse of Primordial Gas Clouds and the Formation of Quasar Black Holes. ApJ, 432:0 52, September 1994. doi: 10.1086/174548.CrossRefGoogle Scholar
Lupi, A., Haardt, F., Dotti, M., Fiacconi, D., Mayer, L., and Madau, P.. Growing massive black holes through supercritical accretion of stellar-mass seeds. MNRAS, 4560 (3):0 2993–3003, March 2016. doi: 10.1093/mnras/stv2877.Google Scholar
Madau, P. and Rees, M. J.. Massive Black Holes as Population III Remnants. ApJ, 551:0 L27–L30, April 2001. doi: 10.1086/319848.CrossRefGoogle Scholar
Magorrian, J., Tremaine, S., Richstone, D., Bender, R., Bower, G., Dressler, A., Faber, S. M., Gebhardt, K., Green, R., Grillmair, C., Kormendy, J., and Lauer, T.. The Demography of Massive Dark Objects in Galaxy Centers. AJ, 115:0 2285–2305, June 1998. doi: 10.1086/300353.CrossRefGoogle Scholar
Mezcua, Mar. Observational evidence for intermediate-mass black holes. International Journal of Modern Physics D, 260 (11):0 1730021, Jan 2017. doi: 10.1142/S021827181730021X.Google Scholar
Mar Mezcua and Helena Domnguez Sánchez. Hidden AGNs in Dwarf Galaxies Revealed by MaNGA: Light Echoes, Off-nuclear Wanderers, and a New Broad-line AGN. ApJL, 8980 (2):0 L30, August 2020. doi: 10.3847/2041-8213/aba199.Google Scholar
Milosavljević, M., Couch, S. M., and Bromm, V.. Accretion Onto Intermediate-Mass Black Holes in Dense Protogalactic Clouds. ApJ, 696:0 L146–L149, May 2009. doi: 10.1088/0004-637X/696/2/L146.CrossRefGoogle Scholar
Priyamvada Natarajan. A new channel to form IMBHs throughout cosmic time. MNRAS, 5010 (1):0 1413–1425, February 2021. doi: 10.1093/mnras/staa3724.Google Scholar
Pacucci, Fabio, Mezcua, Mar, and Regan, John A.. The Active Fraction of Massive Black Holes in Dwarf Galaxies. ApJ, 9200 (2):0 134, October 2021. doi: 10.3847/1538-4357/ac1595.Google Scholar
Hugo Pfister, Marta Volonteri, Dubois, Yohan, Dotti, Massimo, and Colpi, Monica. The erratic dynamical life of black hole seeds in high-redshift galaxies. MNRAS, 4860 (1):0 101–111, June 2019. doi: 10.1093/mnras/stz822.Google Scholar
Rees, M. J.. Accretion and the quasar phenomenon. Physica Scripta, 17:0 193–200, March 1978.Google Scholar
Rees, M. J.. Black Hole Models for Active Galactic Nuclei. ARA&A, 22:0 471–506, 1984. doi: 10.1146/annurev.aa.22.090184.002351.Google Scholar
Regan, J. A. and Haehnelt, M. G.. The formation of compact massive self-gravitating discs in metal-free haloes with virial temperatures of 13000-30000K. MNRAS, 393:0 858–871, March 2009. doi: 10.1111/j.1365-2966.2008.14088.x.CrossRefGoogle Scholar
Regan, J. A, Visbal, E., Wise, J. H., Haiman, Z, Johansson, P. H., and Bryan, G. L. Rapid formation of massive black holes in close proximity to embryonic protogalaxies. Nature Astronomy, 1:0 0075, April 2017. doi: 10.1038/s41550-017-0075.CrossRefGoogle Scholar
Regan, John A. and Downes, Turlough P.. Rise of the first supermassive stars. MNRAS, 4780 (4):0 5037–5049, August 2018. doi: 10.1093/mnras/sty1289.Google Scholar
Regan, John A., Wise, John H., O’Shea, Brian W., and Norman, Michael L.. The emergence of the first star-free atomic cooling haloes in the Universe. MNRAS, 4920 (2):0 3021–3031, February 2020 a. doi: 10.1093/mnras/staa035.Google Scholar
Regan, John A., Wise, John H., Woods, Tyrone E., Downes, Turlough P., O’Shea, Brian W., and Norman, Michael L.. The Formation of Very Massive Stars in Early Galaxies and Implications for Intermediate Mass Black Holes. The Open Journal of Astrophysics, 30 (1):0 15, December 2020 b. doi: 10.21105/astro.2008.08090.Google Scholar
Schauer, Anna T. P., John Regan, Simon C. O. Glover, and Ralf S. Klessen. The formation of direct collapse black holes under the influence of streaming velocities. MNRAS, 4710 (4):0 4878–4884, November 2017. doi: 10.1093/mnras/stx1915.CrossRefGoogle Scholar
Shang, C., Bryan, G. L., and Haiman, Z.. Supermassive black hole formation by direct collapse: keeping protogalactic gas H2 free in dark matter haloes with virial temperatures T vir > rsim 104 K. MNRAS, 402:0 1249–1262, February 2010. doi: 10.1111/j.1365-2966.2009.15960.x.CrossRefGoogle Scholar
Ray Sharma, Alyson Brooks, Somerville, Rachel S., Michael Tremmel, Jillian Bellovary, Wright, Anna, and Quinn, Thomas. Black Hole Growth and Feedback in Isolated Romulus25 Dwarf Galaxies. arXiv e-prints, art. arXiv:1912.06646, Dec 2019.Google Scholar
Smith, Britton D., Regan, John A., Downes, Turlough P., Norman, Michael L., O’Shea, Brian W., and Wise, John H.. The growth of black holes from Population III remnants in the Renaissance simulations. MNRAS, 480:0 3762–3773, November 2018. doi: 10.1093/mnras/sty2103.CrossRefGoogle Scholar
Stone, Nicholas C., Küpper, Andreas H. W., and Ostriker, Jeremiah P.. Formation of massive black holes in galactic nuclei: runaway tidal encounters. MNRAS, 4670 (4):0 4180–4199, June 2017. doi: 10.1093/mnras/stx097.Google Scholar
Tanaka, Takamitsu L. and Li, Miao. The formation of massive black holes in z ∼ 30 dark matter haloes with large baryonic streaming velocities. MNRAS, 4390 (1):0 1092–1100, March 2014. doi: 10.1093/mnras/stu042.Google Scholar
Rosa Valiante, Monica Colpi, Raffaella Schneider, Alberto Mangiagli, Matteo Bonetti, Giulia Cerini, Stephen Fairhurst, Francesco Haardt, Mills, Cameron, and Sesana, Alberto. Unveiling early black hole growth with multifrequency gravitational wave observations. MNRAS, 5000 (3):0 4095–4109, January 2021. doi: 10.1093/mnras/staa3395.Google Scholar
van Wassenhove, S., Volonteri, M., Walker, M. G., and Gair, J. R.. Massive black holes lurking in Milky Way satellites. MNRAS, 4080 (2):0 1139–1146, October 2010. doi: 10.1111/j.1365-2966.2010.17189.x.Google Scholar
Volonteri, M., Lodato, G., and Natarajan, P.. The evolution of massive black hole seeds. MNRAS, 383:0 1079–1088, January 2008. doi: 10.1111/j.1365-2966.2007.12589.x.Google Scholar
Wise, John H., Regan, John A., O’Shea, Brian W., Norman, Michael L., Downes, Turlough P., and Xu, Hao. Formation of massive black holes in rapidly growing pre-galactic gas clouds. Nature, 5660 (7742):0 85–88, January 2019. doi: 10.1038/s41586-019-0873-4.Google Scholar
Woods, T. E., Heger, A., Whalen, D. J., Haemmerlé, L., and Klessen, R. S.. On the Maximum Mass of Accreting Primordial Supermassive Stars. ApJ, 842:0 L6, June 2017. doi: 10.3847/2041-8213/aa7412.CrossRefGoogle Scholar
Ting Xiao, Aaron J. Barth, Jenny E. Greene, Luis C. Ho, Misty C. Bentz, Randi R. Ludwig, and Yanfei Jiang. Exploring the Low-mass End of the M BH-σ* Relation with Active Galaxies. ApJ, 7390 (1):0 28, September 2011. doi: 10.1088/0004-637X/739/1/28.CrossRefGoogle Scholar
Yoshida, N., Abel, T., Hernquist, L., and Sugiyama, N.. Simulations of Early Structure Formation: Primordial Gas Clouds. ApJ, 592:0 645–663, August 2003. doi: 10.1086/375810.CrossRefGoogle Scholar