Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T21:15:24.307Z Has data issue: false hasContentIssue false

Formation of the super star cluster RCW 38 triggered by cloud-cloud collision

Published online by Cambridge University Press:  31 March 2017

Yasuo Fukui*
Affiliation:
Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan. email: fukui@a.phys.nagoya-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

RCW 38 is the youngest super star cluster in the Galaxy and is located at a distance of 1.7 kpc. Molecular observations revealed that the cluster is associated with two molecular clouds having velocity difference of 12 km s−1. We interpret that the two clouds are colliding with each other and the collision triggered the cluster formation. The natal molecular gas still survives within ~ 0.5 pc of the central O stars which have an age of 0.1 Myrs as inferred from the collision morphology. We suggest that the high column density of one of the clouds 1023 cm−2 enabled formation of ~ 20 O stars in the cluster center and discuss the implications on massive cluster formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Anathpindika, S. V. 2010, MNRAS, 405, 1431 Google Scholar
Duarte-Cabral, A. et al. 2010, A&A, 519, A27 Google Scholar
Ezawa, H. et al. 2004, SPIE 5489 Ground-based Telescopes, 763 Google Scholar
Fukui, Y. et al. 2014, ApJ, 780, 36 CrossRefGoogle Scholar
Fukui, Y. et al. 2015, ArXiv e-prints, arXiv:1504.05391Google Scholar
Furukawa, N. et al. 2009, ApJ, 696, L115 CrossRefGoogle Scholar
Habe, A. and Ohta, K. 1992, PASJ, 44, 203 Google Scholar
Haworth, T. J. et al. 2015a, MNRAS, 450, 10 CrossRefGoogle Scholar
Haworth, T. J. et al. 2015b, MNRAS, 454, 1634 CrossRefGoogle Scholar
Higuchi, et al. 2010, ApJ, 719, 1813 CrossRefGoogle Scholar
Inoue, T. and Fukui, Y. 2013, ApJ, 774, L31 CrossRefGoogle Scholar
Nakamura, F. et al. 2013, ApJ, 791, L23 CrossRefGoogle Scholar
Ohama, A. et al. 2010, ApJ, 709, 975 CrossRefGoogle Scholar
Portegies Zwart, S. F. et al. 2010, ARA&A, 48, 431 Google Scholar
Takahira, K. et al. 2014, ApJ, 792, 63 CrossRefGoogle Scholar
Tan, J. C. et al. 2014, Protostars and Planets VI, 149Google Scholar
Torii, K. et al. 2011, ApJ, 738, 46 CrossRefGoogle Scholar
Torii, K. et al. 2015, ApJ, 806, 7 CrossRefGoogle Scholar
Wolk, et al. 2006, ApJ, 132, 1100 CrossRefGoogle Scholar
Wolk, et al. 2008, The Embedded Massive Star Forming Region RCW 38, ed. Reipurth, B., 124Google Scholar
Zinnecker, H. and York, H. W. 2007, ARA&A, 45, 481 Google Scholar