Hostname: page-component-7bb8b95d7b-dtkg6 Total loading time: 0 Render date: 2024-09-11T11:20:01.976Z Has data issue: false hasContentIssue false

The Galactic Centre - a laboratory for starburst galaxies (?)

Published online by Cambridge University Press:  17 August 2012

Roland M. Crocker*
Affiliation:
Max-Planck-Institut für Kernphsik, P.O. Box 103980Heidelberg, Germany email: Roland.Crocker@mpi-hd.mpg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Galactic centre – as the closest galactic nucleus – holds both intrinsic interest and possibly represents a useful analogue to starburst nuclei which we can observe with orders of magnitude finer detail than these external systems. The environmental conditions in the GC – here taken to mean the inner 200 pc in diameter of the Milky Way – are extreme with respect to those typically encountered in the Galactic disk. The energy densities of the various GC ISM components are typically ~two orders of magnitude larger than those found locally and the star-formation rate density ~three orders of magnitude larger. Unusually within the Galaxy, the Galactic centre exhibits hard-spectrum, diffuse TeV (=1012 eV) gamma-ray emission spatially coincident with the region's molecular gas. Recently the nuclei of local starburst galaxies NGC 253 and M82 have also been detected in gamma-rays of such energies. We have embarked on an extended campaign of modelling the broadband (radio continuum to TeV gamma-ray), non- thermal signals received from the inner 200 pc of the Galaxy. On the basis of this modelling we find that star-formation and associated supernova activity is the ultimate driver of the region's non-thermal activity. This activity drives a large-scale wind of hot plasma and cosmic rays out of the GC. The wind advects the locally-accelerated cosmic rays quickly, before they can lose much energy in situ or penetrate into the densest molecular gas cores where star-formation occurs. The cosmic rays can, however, heat/ionize the lower density/warm H2 phase enveloping the cores. On very large scales (~10 kpc) the non-thermal signature of the escaping GC cosmic rays has probably been detected recently as the spectacular ‘Fermi bubbles’ and corresponding ‘YWMAP haze’.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Aharonian, F. A., et al. 2006, Nature, 439, 695CrossRefGoogle Scholar
Chernyakova, M., Malyshev, D., Aharonian, F. A., Crocker, R. M., & Jones, D. I. 2011, ApJ, 726, 60CrossRefGoogle Scholar
Condon, J., 1992, AAP, 30, 575Google Scholar
Crocker, R. M., Jones, D. I., Melia, F., Ott, J., & Protheroe, R. J. 2010, Nature, 463, 65CrossRefGoogle Scholar
Crocker, R. M., Jones, D. I., Aharonian, F., et al. 2011a, MNRAS, 411, L11CrossRefGoogle Scholar
Crocker, R. M. & Aharonian, F. A. 2011, Physical Review Letters, 106, 101102CrossRefGoogle Scholar
Crocker, R. M., Jones, D. I., Aharonian, F., Law, C. J., Melia, F., Oka, T., & Ott, J. 2011, MNRAS, 413, 763CrossRefGoogle Scholar
Cheng, K.-S., Chernyshov, D. O., Dogiel, V. A., Ko, C.-M., & Ip, W.-H. 2011, ApJ, 731, L17CrossRefGoogle Scholar
Dobler, G. & Finkbeiner, D. P. 2008, ApJ, 680, 1222CrossRefGoogle Scholar
Figer, D., et al. 2004, ApJ, 601, 319CrossRefGoogle Scholar
Finkbeiner, D. P. 2004, arXiv:astro-ph/0409027Google Scholar
Goto, M., et al. 2008, ApJ, 688, 306CrossRefGoogle Scholar
Guo, F. & Mathews, W. G. 2011, arXiv:1103.0055Google Scholar
Koyama, K., Awaki, H., Kunieda, H., Takano, S., & Tawara, Y. 1989, Nature, 339, 603CrossRefGoogle Scholar
LaRosa, T. N., Brogan, C. L., Shore, S. N., Lazio, T. J., Kassim, N. E., & Nord, M. E. 2005, ApJ, 626, L23CrossRefGoogle Scholar
Law, C. J. 2010, ApJ, 708, 474CrossRefGoogle Scholar
Maness, H., et al. 2007, ApJ, 669, 1024CrossRefGoogle Scholar
Martin, C. L. 2005, ApJ, 621, 227CrossRefGoogle Scholar
Mertsch, P. & Sarkar, S. 2011, Physical Review Letters, 107, 091101CrossRefGoogle Scholar
Muno, M. P. et al. 2004, ApJ, 613, 326CrossRefGoogle Scholar
Papadopoulos, P. P. 2010, ApJ, 720, 226CrossRefGoogle Scholar
Revnivtsev, M., Sazonov, S., Churazov, E., Forman, W., Vikhlinin, A., & Sunyaev, R. 2009, Nature, 458, 1142CrossRefGoogle Scholar
Strickland, D. K. & Heckman, T. M. 2009, ApJ, 697, 2030CrossRefGoogle Scholar
Su, M., Slatyer, T. R., & Finkbeiner, D. P. 2010, ApJ, 724, 1044CrossRefGoogle Scholar
Thompson, T. A., Quataert, E., & Waxman, E. 2007, ApJ, 654, 219CrossRefGoogle Scholar
Völk, H. J. 1989, A&A, 218, 67Google Scholar